[1]

Ault A. 2004. The monosodium glutamate story: The commercial production of MSG and other amino acids. Journal of Chemical Education 81:347−55

doi: 10.1021/ed081p347
[2]

Kurihara K. 2015. Umami the fifth basic taste: History of studies on receptor mechanisms and role as a food flavor. BioMed Research International 2015:189402

doi: 10.1155/2015/189402
[3]

Backes M, Obst K, Bojahr J, Thorhauer A, Roudnitzky N, et al. 2015. Rubemamine and Rubescenamine, two naturally occurring N-cinnamoyl phenethylamines with umami-taste-modulating properties. Journal of Agricultural and Food Chemistry 63:8694−704

doi: 10.1021/acs.jafc.5b04402
[4]

Kwok RH. 1968. Chinese-restaurant syndrome. New England Journal of Medicine 278:796

doi: 10.1056/nejm196804042781419
[5]

Yousof SM, Awad YM, Mostafa EMA, Hosny MM, Anwar MM, et al. 2021. The potential neuroprotective role of Amphora coffeaeformis algae against monosodium glutamate-induced neurotoxicity in adult albino rats. Food & Function 12:706−16

doi: 10.1039/D0FO01957G
[6]

Al Hargan A, Daghestani MH, Harrath AH. 2021. Alterations in APC, BECN1, and TP53 gene expression levels in colon cancer cells caused by monosodium glutamate. Brazilian Journal of Biology 83:e246970

doi: 10.1590/1519-6984.246970
[7]

Hermanussen M, Garcia AP, Sunder M, Voigt M, Salazar V, Tresguerres JA. 2006. Obesity, voracity, and short stature:the impact of glutamate on the regulation of appetite. European Journal of Clinical Nutrition 60:25−31

doi: 10.1038/sj.ejcn.1602263
[8]

Depoortere I. 2014. Taste receptors of the gut: emerging roles in health and disease. Gut 63:179−90

doi: 10.1136/gutjnl-2013-305112
[9]

Maragakis NJ, Rothstein JD. 2004. Glutamate transporters: animal models to neurologic disease. Neurobiology of Disease 15:461−73

doi: 10.1016/j.nbd.2003.12.007
[10]

Mott CR, Siegel PB, Webb KE Jr, Wong EA. 2008. Gene expression of nutrient transporters in the small intestine of chickens from lines divergently selected for high or low juvenile body weight. Poultry Science 87:2215−24

doi: 10.3382/ps.2008-00101
[11]

Burrin DG, Stoll B. 2009. Metabolic fate and function of dietary glutamate in the gut. The American Journal of Clinical Nutrition 90:850S−856S

doi: 10.3945/ajcn.2009.27462Y
[12]

Windmueller HG, Spaeth AE. 1975. Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Archives of Biochemistry and Biophysics 171:662−72

doi: 10.1016/0003-9861(75)90078-8
[13]

Windmueller HG, Spaeth AE. 1976. Metabolism of absorbed aspartate, asparagine, and arginine by rat small intestine in vivo. Archives of Biochemistry and Biophysics 175:670−76

doi: 10.1016/0003-9861(76)90558-0
[14]

Stegink LD, Filer LJ Jr, Baker GL. 1983. Plasma amino acid concentrations in normal adults fed meals with added monosodium L-glutamate and aspartame. The Journal of Nutrition 113:1851−60

doi: 10.1093/jn/113.9.1851
[15]

Sarabhai T, Roden M. 2019. Hungry for your alanine: when liver depends on muscle proteolysis. The Journal of Clinical Investigation 129:4563−66

doi: 10.1172/JCI131931
[16]

Cynober L. 2018. Metabolism of dietary glutamate in adults. Annals of Nutrition & Metabolism 73:5−14

doi: 10.1159/000494776
[17]

Hernández-Bautista RJ, Alarcón-Aguilar FJ, del C Escobar-Villanueva M, Almanza-Pérez JC, Merino-Aguilar H, et al. 2014. Biochemical alterations during the obese-aging process in female and male monosodium glutamate (MSG)-treated mice. International Journal of Molecular Sciences 15:11473−94

doi: 10.3390/ijms150711473
[18]

Nakanishi Y, Tsuneyama K, Fujimoto M, Salunga TL, Nomoto K, et al. 2008. Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia. Journal of Autoimmunity 30:42−50

doi: 10.1016/j.jaut.2007.11.016
[19]

Li PP, Shan S, Chen YT, Ning ZQ, Sun SJ, et al. 2006. The PPARalpha/gamma dual agonist chiglitazar improves insulin resistance and dyslipidemia in MSG obese rats. British Journal of Pharmacology 148:610−18

doi: 10.1038/sj.bjp.0706745
[20]

Jin L, Lin L, Li GY, Liu S, Luo DJ, et al. 2018. Monosodium glutamate exposure during the neonatal period leads to cognitive deficits in adult Sprague-Dawley rats. Neuroscience Letters 682:39−44

doi: 10.1016/j.neulet.2018.06.008
[21]

Collison KS, Zaidi MZ, Saleh SM, Makhoul NJ, Inglis A, et al. 2012. Nutrigenomics of hepatic steatosis in a feline model: effect of monosodium glutamate, fructose, and Trans-fat feeding. Genes & Nutrition 7:265−80

doi: 10.1007/s12263-011-0261-7
[22]

Miranda RA, da Silva Franco CC, de Oliveira JC, Barella LF, Tófolo LP, et al. 2017. Cross-fostering reduces obesity induced by early exposure to monosodium glutamate in male rats. Endocrine 55:101−12

doi: 10.1007/s12020-016-0965-y
[23]

Shi Z, Luscombe-Marsh ND, Wittert GA, Yuan B, Dai Y, et al. 2010. Monosodium glutamate is not associated with obesity or a greater prevalence of weight gain over 5 years: findings from the Jiangsu Nutrition Study of Chinese adults. The British Journal of Nutrition 104:457−63

doi: 10.1017/S0007114510000760
[24]

Torrezan R, Malta A, de Souza Rodrigues WDN, Dos Santos AAA, Miranda RA, et al. 2019. Monosodium L-glutamate-obesity onset is associated with disruption of central control of the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Journal of Neuroendocrinology 31:e12717

doi: 10.1111/jne.12717
[25]

He K, Du S, Xun P, Sharma S, Wang H, et al. 2011. Consumption of monosodium glutamate in relation to incidence of overweight in Chinese adults: China Health and Nutrition Survey (CHNS). The American Journal of Clinical Nutrition 93:1328−36

doi: 10.3945/ajcn.110.008870
[26]

Insawang T, Selmi C, Cha'on U, Pethlert S, Yongvanit P, et al. 2012. Monosodium glutamate (MSG) intake is associated with the prevalence of metabolic syndrome in a rural Thai population. Nutrition & Metabolism 9:50

doi: 10.1186/1743-7075-9-50
[27]

Myers J, London L, Lucchini RG. 2014. Neurotoxicology and development: human, environmental and social impacts. Neurotoxicology 45:217−19

doi: 10.1016/j.neuro.2014.08.002
[28]

López-Pérez SJ, Ureña-Guerrero ME, Morales-Villagrán A. 2010. Monosodium glutamate neonatal treatment as a seizure and excitotoxic model. Brain Research 1317:246−56

doi: 10.1016/j.brainres.2009.12.054
[29]

Olney JW, Sharpe LG. 1969. Brain Lesions in an Infant Rhesus Monkey Treated with Monosodium Glutamate. Science 166:386−88

doi: 10.1126/science.166.3903.386
[30]

Burde RM, Schainker B, Kayes J. 1971. Acute effect of oral and subcutaneous administration of monosodium glutamate on the arcuate nucleus of the hypothalamus in mice and rats. Nature 233:58−60

doi: 10.1038/233058a0
[31]

Ali MM, Bawari M, Misra UK, Babu GN. 2000. Locomotor and learning deficits in adult rats exposed to monosodium-L-glutamate during early life. Neuroscience Letters 284:57−60

doi: 10.1016/S0304-3940(00)00958-7
[32]

Ramalho JB, Izaguirry AP, Soares MB, Spiazzi CC, Pavin NF, et al. 2018. Selenofuranoside improves long-term memory deficits in rats after exposure to monosodium glutamate: Involvement of Na+, K+-ATPase activity. Physiology & Behavior 184:27−33

doi: 10.1016/j.physbeh.2017.10.028
[33]

Hussein UK, Hassan NEY, Elhalwagy MEA, Zaki AR, Abubakr HO, et al. 2017. Ginger and Propolis Exert Neuroprotective Effects against Monosodium Glutamate-Induced Neurotoxicity in Rats. Molecules 22:1928

doi: 10.3390/molecules22111928
[34]

Madhavadas S, Subramanian S, Kutty BM. 2017. Environmental enrichment improved cognitive deficits more in peri-adolescent than in adult rats after postnatal monosodium glutamate treatment. Physiology International 104:271−90

doi: 10.1556/2060.104.2017.4.7
[35]

Altaher W, Alhelo H, Chosky D, Kulesza RJ, Jr. 2021. Neonatal exposure to monosodium glutamate results in impaired auditory brainstem structure and function. Hearing Research 405:108243

doi: 10.1016/j.heares.2021.108243
[36]

Sharma A, Prasongwattana V, Cha'on U, Selmi C, Hipkaeo W, et al. 2013. Monosodium glutamate (MSG) consumption is associated with urolithiasis and urinary tract obstruction in rats. PLoS One 8:e75546

doi: 10.1371/journal.pone.0075546
[37]

Mahieu S, Klug M, Millen N, Fabro A, Benmelej A, et al. 2016. Monosodium glutamate intake affect the function of the kidney through NMDA receptor. Life Sciences 149:114−19

doi: 10.1016/j.lfs.2016.02.023
[38]

Sharma A, Wongkham C, Prasongwattana V, Boonnate P, Thanan R, et al. 2014. Proteomic analysis of kidney in rats chronically exposed to monosodium glutamate. PLoS One 9:e116233

doi: 10.1371/journal.pone.0116233
[39]

Elbassuoni EA, Ragy MM, Ahmed SM. 2018. Evidence of the protective effect of L-arginine and vitamin D against monosodium glutamate-induced liver and kidney dysfunction in rats. Biomedicine & Pharmacotherapy 108:799−808

doi: 10.1016/j.biopha.2018.09.093
[40]

Abo Zeid AA, Rowida Raafat I, Ahmed AG. 2022. Berberine alleviates monosodium glutamate induced postnatal metabolic disorders associated vascular endothelial dysfunction in newborn rats: possible role of matrix metalloproteinase-1. Archives of Physiology and Biochemistry 128:818−29

doi: 10.1080/13813455.2020.1729815
[41]

Kumar P, Bhandari U. 2013. Protective effect of Trigonella foenum-graecum Linn. on monosodium glutamate-induced dyslipidemia and oxidative stress in rats. Indian Journal of Pharmacology 45:136−40

doi: 10.4103/0253-7613.108288
[42]

Liu Y, Zhou L, Xu HF, Yan L, Ding F, et al. 2013. A preliminary experimental study on the cardiac toxicity of glutamate and the role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor in rats. Chinese Medical Journal 126:1323−32

[43]

Jubaidi FF, Mathialagan RD, Noor MM, Taib IS, Budin SB. 2019. Monosodium glutamate daily oral supplementation: study of its effects on male reproductive system on rat model. Systems Biology in Reproductive Medicine 65:194−204

doi: 10.1080/19396368.2019.1573274
[44]

Meesala KM, Khandayataray P. 2018. Monosodium Glutamate Toxicity and the Possible Protective Role of L–Carnitine. Science & Technology Journal 6:45−56

[45]

Hamza RZ, Al-Harbi MS. 2014. Monosodium glutamate induced testicular toxicity and the possible ameliorative role of vitamin E or selenium in male rats. Toxicology Reports 1:1037−45

doi: 10.1016/j.toxrep.2014.10.002
[46]

Quines CB, Jardim NS, Araujo PCO, Cechella JL, Prado VC, et al. 2019. Resistance training restores metabolic alterations induced by monosodium glutamate in a sex-dependent manner in male and female rats. Journal of Cellular Biochemistry 120:13426−40

doi: 10.1002/jcb.28617
[47]

Mondal M, Sarkar K, Nath PP, Paul G. 2018. Monosodium glutamate suppresses the female reproductive function by impairing the functions of ovary and uterus in rat. Environmental Toxicology 33:198−208

doi: 10.1002/tox.22508
[48]

Gaspar RS, Benevides ROA, Fontelles JLdL, Vale CC, França LM, et al. 2016. Reproductive alterations in hyperinsulinemic but normoandrogenic MSG obese female rats. The Journal of Endocrinology 229:61−72

doi: 10.1530/JOE-15-0453
[49]

Rani J, Savalagimath MP. 2017. Effect of Dooshivishari Agada over MSG-induced reproductive toxicity w. s. r. ovary and follicle count. AYU 38:88−92

doi: 10.4103/ayu.AYU_166_17
[50]

Guo W, Li K, Sun B, Xu D, Tong L, et al. 2021. Dysregulated glutamate transporter SLC1A1 propels cystine uptake via Xc for glutathione synthesis in lung cancer. Cancer Research 81:552−66

doi: 10.1158/0008-5472.CAN-20-0617
[51]

de Queiroz EAIF, Akamine EH, de Carvalho MHC, Sampaio SC, Fortes ZB. 2015. Metformin reduces the Walker-256 tumor development in obese-MSG rats via AMPK and FOXO3a. Life Sciences 121:78−87

doi: 10.1016/j.lfs.2014.11.028
[52]

Hata K, Kubota M, Shimizu M, Moriwaki H, Kuno T, et al. 2012. Monosodium glutamate-induced diabetic mice are susceptible to azoxymethane-induced colon tumorigenesis. Carcinogenesis 33:702−7

doi: 10.1093/carcin/bgr323
[53]

Scalise M, Pochini L, Galluccio M, Console L, Indiveri C. 2017. Glutamine Transport and Mitochondrial Metabolism in Cancer Cell Growth. Frontiers in Oncology 7:306

doi: 10.3389/fonc.2017.00306
[54]

Ataseven N, Yüzbaşıoğlu D, Keskin AÇ, Ünal F. 2016. Genotoxicity of monosodium glutamate. Food and Chemical Toxicology 91:8−18

doi: 10.1016/j.fct.2016.02.021
[55]

Jovic Z, Veselinovic M, Vasic K, Stankovic-Djordjevic D, Cekic S, et al. 2009. Monosodium glutamate induces apoptosis in naive and memory human B cells. Bratislavske Lekarske Listy 110:636−40

[56]

Castrogiovanni D, Gaillard RC, Giovambattista A, Spinedi E. 2008. Neuroendocrine, metabolic, and immune functions during the acute phase response of inflammatory stress in monosodium L-glutamate-damaged, hyperadipose male rat. Neuroendocrinology 88:227−34

doi: 10.1159/000124131
[57]

Nakadate K, Motojima K, Hirakawa T, Tanaka-Nakadate S. 2016. Progressive depletion of rough endoplasmic reticulum in epithelial cells of the small intestine in monosodium glutamate mice model of obesity. BioMed Research International 2016:5251738

doi: 10.1155/2016/5251738
[58]

Pavlovic V, Cekic S, Sokolovic D, Djindjic B. 2006. Modulatory effect of monosodium glutamate on rat thymocyte proliferation and apoptosis. Bratislavske Lekarske Listy 107:185−91

[59]

Farombi EO, Onyema OO. 2006. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Human & Experimental Toxicology 25:251−59

doi: 10.1191/0960327106ht621oa
[60]

Belluardo N, Mudò G, Bindoni M. 1990. Effects of early destruction of the mouse arcuate nucleus by monosodium glutamate on age-dependent natural killer activity. Brain Research 534:225−33

doi: 10.1016/0006-8993(90)90132-U
[61]

Woessner KM, Simon RA, Stevenson DD. 1999. Monosodium glutamate sensitivity in asthma. The Journal of Allergy and Clinical Immunology 104:305−10

doi: 10.1016/S0091-6749(99)70371-4
[62]

Zanfirescu A, Cristea AN, Nitulescu GM, Velescu BS, Gradinaru D. 2017. Chronic Monosodium Glutamate Administration Induced Hyperalgesia in Mice. Nutrients 10:1

doi: 10.3390/nu10010001
[63]

Miskowiak B, Partyka M. 1999. Effect of neonatal treatment with MSG (monosodium glutamate) on thyroid of the adult male rats. Histology and Histopathology 14:63−67

doi: 10.14670/HH-14.63
[64]

Sasaki-Hamada S, Hojyo Y, Mizumoto R, Koyama H, Yanagisawa S, et al. 2021. Cognitive and hippocampal synaptic profiles in monosodium glutamate-induced obese mice. Neuroscience Research 170:201−7

doi: 10.1016/j.neures.2020.08.005
[65]

Romagnano MA, Chafel TL, Pilcher WH, Joseph SA. 1982. The distribution of enkephalin in the mediobasal hypothalamus of the mouse brain: effects of neonatal administration of MSG. Brain Research 236:497−504

doi: 10.1016/0006-8993(82)90734-X
[66]

Lima CB, Soares GdSF, Vitor SM, Castellano B, Andrade da Costa BL, Guedes RC. 2013. Neonatal treatment with monosodium glutamate lastingly facilitates spreading depression in the rat cortex. Life Sciences 93:388−92

doi: 10.1016/j.lfs.2013.07.009
[67]

Frieder B, Grimm VE. 1984. Prenatal monosodium glutamate (MSG) treatment given through the mother's diet causes behavioral deficits in rat offspring. International Journal of Neuroscience 23:117−26

doi: 10.3109/00207458408985353
[68]

Pavlovic V, Pavlovic D, Kocic G, Sokolovic D, Jevtovic-Stoimenov T, et al. 2007. Effect of monosodium glutamate on oxidative stress and apoptosis in rat thymus. Molecular and Cellular Biochemistry 303:161−66

doi: 10.1007/s11010-007-9469-7
[69]

Fuchsberger T, Yuste R, Martinez-Bellver S, Blanco-Gandia MC, Torres-Cuevas I, et al. 2019. Oral Monosodium glutamate administration causes early onset of Alzheimer's disease-like pathophysiology in APP/PS1 mice. Journal of Alzheimer's Disease 72:957−75

doi: 10.3233/JAD-190274
[70]

Hlinák Z, Gandalovicová D, Krejcí I. 2005. Behavioral deficits in adult rats treated neonatally with glutamate. Neurotoxicol Teratol 27:465−73

doi: 10.1016/j.ntt.2005.03.006
[71]

Demirkapu MJ, Yananlı HR, Akşahin E, Karabiber C, Günay P, et al. 2020. The effect of oral administration of monosodium glutamate on epileptogenesis in infant rats. Epileptic Disorders 22:195−201

doi: 10.1684/epd.2020.1156
[72]

Prastiwi D, Djunaidi A, Partadiredja G. 2015. High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats. Human & Experimental Toxicology 34:1171−79

doi: 10.1177/0960327115572706
[73]

Lee KT, Sheen PC. 1994. Study of lysosomal changes in rat pancreas after ingesting monosodium L-glutamate. Pancreas 9:304−8

doi: 10.1097/00006676-199405000-00004
[74]

Türküner MS, Özcan F. 2020. Monosodium glutamate restricts the adipogenic potential of 3T3-L1 preadipocytes through mitotic clonal expansion. Cell Biology International 44:744−54

doi: 10.1002/cbin.11269
[75]

Allen DH, Baker GJ. 1981. Chinese-restaurant asthma. New England Journal of Medicine 305:1154−55

doi: 10.1056/nejm198111053051915
[76]

Allen DH, Delohery J, Baker G. 1987. Monosodium L-glutamate-induced asthma. The Journal of Allergy and Clinical Immunology 80:530−37

doi: 10.1016/0091-6749(87)90003-0
[77]

Baad-Hansen L, Cairns B, Ernberg M, Svensson P. 2010. Effect of systemic monosodium glutamate (MSG) on headache and pericranial muscle sensitivity. Cephalalgia 30:68−76

doi: 10.1111/j.1468-2982.2009.01881.x
[78]

Kraal AZ, Arvanitis NR, Jaeger AP, Ellingrod VL. 2020. Could dietary glutamate play a role in psychiatric distress? Neuropsychobiology 79:13−19

doi: 10.1159/000496294
[79]

Shi Z, Wittert GA, Yuan B, Dai Y, Gill TK, et al. 2013. Association between monosodium glutamate intake and sleep-disordered breathing among Chinese adults with normal body weight. Nutrition 29:508−13

doi: 10.1016/j.nut.2012.08.011
[80]

Shi Z, Yuan B, Taylor AW, Dai Y, Pan X, et al. 2011. Monosodium glutamate is related to a higher increase in blood pressure over 5 years: findings from the Jiangsu Nutrition Study of Chinese adults. Journal of Hypertension 29:846−53

doi: 10.1097/HJH.0b013e328344da8e
[81]

Nandan P, Nayanatara AK, Poojary R, Bhagyalakshmi K, Nirupama M, et al. 2018. Protective role of Co-administration of vitamin D in monosodium glutamate induced obesity in female rats. Journal of the National Medical Association 110:98−102

doi: 10.1016/j.jnma.2017.03.006
[82]

Savcheniuk OA, Virchenko OV, Falalyeyeva TM, Beregova TV, Babenko LP, et al. 2014. The efficacy of probiotics for monosodium glutamate-induced obesity: dietology concerns and opportunities for prevention. The EPMA Journal 5:2

doi: 10.1186/1878-5085-5-2
[83]

Du J, He W, Zhang C, Wu J, Li Z, et al. 2020. Pentamethylquercetin Attenuates Cardiac Remodeling via Activation of the Sestrins/Keap1/Nrf2 Pathway in MSG-Induced Obese Mice. The EPMA Journal 2020:3243906

doi: 10.1155/2020/3243906
[84]

Zhao L, Zhu X, Xia M, Li J, Guo AY, et al. 2021. Quercetin Ameliorates Gut Microbiota Dysbiosis That Drives Hypothalamic Damage and Hepatic Lipogenesis in Monosodium Glutamate-Induced Abdominal Obesity. Frontiers in Nutrition 8:671353

doi: 10.3389/fnut.2021.671353
[85]

Hocayen PdAS, Grassiolli S, Leite NC, Pochapski MT, Pereira RA, et al. 2016. Baccharis dracunculifolia methanol extract enhances glucose-stimulated insulin secretion in pancreatic islets of monosodium glutamate induced-obesity model rats. Pharmaceutical Biology 54:1263−71

doi: 10.3109/13880209.2015.1067232
[86]

Patil S, Prakash T, Kotresha D, Rao NR, Pandy N. 2011. Antihyperlipidemic potential of Cedrus deodara extracts in monosodium glutamate induced obesity in neonatal rats. Indian Journal of Pharmacology 43:644−47

[87]

Quines CB, Chagas PM, Hartmann D, Carvalho NR, Soares FA, Nogueira CW. 2017. (p-ClPhSe)2 Reduces Hepatotoxicity Induced by Monosodium Glutamate by Improving Mitochondrial Function in Rats. Journal of Cellular Biochemistry 118:2877−86

doi: 10.1002/jcb.25938
[88]

Sasaki Y, Shimada T, Iizuka S, Suzuki W, Makihara H, et al. 2011. Effects of bezafibrate in nonalcoholic steatohepatitis model mice with monosodium glutamate-induced metabolic syndrome. European Journal of Pharmacology 662:1−8

doi: 10.1016/j.ejphar.2011.04.051
[89]

Sanches JR, França LM, Chagas VT, Gaspar RS, Dos Santos KA, et al. 2016. Polyphenol-rich extract of Syzygium cumini leaf dually improves peripheral insulin sensitivity and pancreatic islet function in monosodium L-glutamate-induced obese rats. Frontiers in Pharmacology 7:48

doi: 10.3389/fphar.2016.00048
[90]

Hazzaa SM, Abdelaziz SAM, Abd Eldaim MA, Abdel-Daim MM, Elgarawany GE. 2020. Neuroprotective potential of Allium sativum against monosodium glutamate-induced excitotoxicity: Impact on short-term memory, gliosis, and oxidative stress. Nutrients 12:1028

doi: 10.3390/nu12041028
[91]

Waggas AM. 2009. Neuroprotective evaluation of extract of ginger (Zingiber officinale) root in monosodium glutamate-induced toxicity in different brain areas male albino rats. Pakistan Journal of Biological Sciences 12:201−12

doi: 10.3923/pjbs.2009.201.212
[92]

Firgany AEDL, Sarhan NR. 2020. Quercetin mitigates monosodium glutamate-induced excitotoxicity of the spinal cord motoneurons in aged rats via p38 MAPK inhibition. Acta Histochemica 122:151554

doi: 10.1016/j.acthis.2020.151554
[93]

Dief AE, Kamha ES, Baraka AM, Elshorbagy AK. 2014. Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: a potential role for cyclic AMP protein kinase. Neurotoxicology 42:76−82

doi: 10.1016/j.neuro.2014.04.003
[94]

Zanuzo K, Guareschi ZM, Detogni AC, Huning LP, Rodrigues PF, et al. 2020. Physical exercise associated with vitamin D chronic supplementation reduces kidney injury induced by monosodium glutamate. Anais Da Academia Brasileira De Ciencias 92:e20201097

doi: 10.1590/0001-3765202020201097
[95]

Abd-Elkareem M, Abd El-Rahman MAM, Khalil NSA, Amer AS. 2021. Antioxidant and cytoprotective effects of Nigella sativa L. seeds on the testis of monosodium glutamate challenged rats. Scientific Reports 11:13519

doi: 10.1038/s41598-021-92977-4
[96]

Gad FAM, Farouk SM, Emam MA. 2021. Antiapoptotic and antioxidant capacity of phytochemicals from Roselle (Hibiscus sabdariffa) and their potential effects on monosodium glutamate-induced testicular damage in rat. Environmental Science and Pollution Research International 28:2379−90

doi: 10.1007/s11356-020-10674-7
[97]

Park E, Yu KH, Kim DK, Kim S, Sapkota K, et al. 2014. Protective effects of N-acetylcysteine against monosodium glutamate-induced astrocytic cell death. Food and Chemical Toxicology 67:1−9

doi: 10.1016/j.fct.2014.02.015
[98]

Vitor-de-Lima SM, Medeiros LB, Benevides RDL, Dos Santos CN, Lima da Silva NO, Guedes RCA. 2019. Monosodium glutamate and treadmill exercise: Anxiety-like behavior and spreading depression features in young adult rats. Nutritional Neuroscience 22:435−43

doi: 10.1080/1028415X.2017.1398301
[99]

Araujo PCO, Quines CB, Jardim NS, Leite MR, Nogueira CW. 2017. Resistance exercise reduces memory impairment induced by monosodium glutamate in male and female rats. Experimental Physiology 102:845−53

doi: 10.1113/EP086198
[100]

Quines CB, Rosa SG, Chagas PM, da Rocha JT, Dobrachinski F, et al. 2016. Homeostatic effect of p-chloro-diphenyl diselenide on glucose metabolism and mitochondrial function alterations induced by monosodium glutamate administration to rats. Amino Acids 48:137−48

doi: 10.1007/s00726-015-2073-3