[1] |
Zhang L, McClements DJ, Wei Z, Wang G, Liu X, et al. 2020. Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Critical Reviews in Food Science and Nutrition 60:2083−97 doi: 10.1080/10408398.2019.1630358 |
[2] |
Cirillo G, Curcio M, Vittorio O, Iemma F, Restuccia D, et al. 2016. Polyphenol Conjugates and Human Health: A Perspective Review. Critical Reviews in Food Science and Nutrition 56:326−37 doi: 10.1080/10408398.2012.752342 |
[3] |
Yildirim-Elikoglu S, Erdem YK. 2018. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. Food Reviews International 34:665−97 doi: 10.1080/87559129.2017.1377225 |
[4] |
Jakobek L. 2015. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry 175:556−67 doi: 10.1016/j.foodchem.2014.12.013 |
[5] |
Dai T, Yan X, Li Q, Li T, Liu C, et al. 2017. Characterization of binding interaction between rice glutelin and gallic acid: Multi-spectroscopic analyses and computational docking simulation. Food Research International 102:274−81 doi: 10.1016/j.foodres.2017.09.020 |
[6] |
Canizales JR, Rodríguez GR, Avila JA et al. 2019. Encapsulation to protect different bioactives to be used as nutraceuticals and food ingredients, In Bioactive Molecules in Food, ed. Merillon JM, Ramawat KG, 2163: 82. Cham: Springer International Publishing. pp. 1−20. https://doi.org/10.1007/978-3-319-54528-8_84-1 |
[7] |
Rehman A, Ahmad T, Aadil RM, Spotti MJ, Bakry AM, et al. 2019. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends in Food Science & Technology 90:35−46 doi: 10.1016/j.jpgs.2019.05.015 |
[8] |
Gharehbeglou P, Jafari SM, Hamishekar H, Homayouni A, Mirzaei H. 2019. Pectin-whey protein complexes vs. small molecule surfactants for stabilization of double nano-emulsions as novel bioactive delivery systems. Journal of Food Engineering 245:139−48 doi: 10.1016/j.jfoodeng.2018.10.016 |
[9] |
Rehman A, Tong Q, Jafari SM, Assadpour E, Shehzad Q, et al. 2020. Carotenoid-loaded nanocarriers: A comprehensive review. Advances in Colloid and Interface Science 275:102048 doi: 10.1016/j.cis.2019.102048 |
[10] |
Metwally AA, El-Ahmady SH, Hathout RM. 2016. Selecting optimum protein nano-carriers for natural polyphenols using chemoinformatics tools. Phytomedicine 23:1764−70 doi: 10.1016/j.phymed.2016.10.020 |
[11] |
Šaponjac VT, Ćetković G, Čanadanović-Brunet J, Pajin B, Djilas S, et al. 2016. Sour cherry pomace extract encapsulated in whey and soy proteins: Incorporation in cookies. Food Chemistry 207:27−33 doi: 10.1016/j.foodchem.2016.03.082 |
[12] |
Mohammadi A, Jafari SM, Assadpour E, Faridi Esfanjani A. 2016. Nano-encapsulation of olive leaf phenolic compounds through WPC–pectin complexes and evaluating their release rate. International Journal of Biological Macromolecules 82:816−22 doi: 10.1016/j.ijbiomac.2015.10.025 |
[13] |
Veneranda M, Hu Q, Wang T, Luo Y, Castro K, et al. 2018. Formation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of eugenol. LWT 89:596−603 doi: 10.1016/j.lwt.2017.11.040 |
[14] |
Kardum N, Glibetic M. 2018. Polyphenols and Their Interactions With Other Dietary Compounds: Implications for Human Health. Advances in Food and Nutrition Research 84:103−44 doi: 10.1016/bs.afnr.2017.12.001 |
[15] |
Kimpel F, Schmitt JJ. 2015. Review: Milk Proteins as Nanocarrier Systems for Hydrophobic Nutraceuticals. Journal of Food Science 80:R2361−R2366 doi: 10.1111/1750-3841.13096 |
[16] |
Fathi M, Donsi F, McClements DJ. 2018. Protein-Based Delivery Systems for the Nanoencapsulation of Food Ingredients. Comprehensive Reviews in Food Science and Food Safety 17:920−936 doi: 10.1111/1541-4337.12360 |
[17] |
Ozdal T, Yalcinkaya İE, Toydemir G, Capanoglu E. 2019. Polyphenol-Protein Interactions and Changes in Functional Properties and Digestibility. In Encyclopedia of Food Chemistry, ed. Melton L, Shahidi F, Varelis P. Oxford: Academic Press. pp. 566−77. https://doi.org/10.1016/b978-0-08-100596-5.21490-x |
[18] |
Shahidi F, Senadheera R. 2019. Encyclopedia of Food Chemistry: Protein–Phenol Interactions. In Encyclopedia of Food Chemistry, eds. Melton L, Shahidi F, Varelis P. Amsterdam: Elsevier. pp. 532−38. https://doi.org/10.1016/B978-0-08-100596-5.21485-6 |
[19] |
Tang F, Xie Y, Cao H, Yang H, Chen X, et al. 2017. Fetal bovine serum influences the stability and bioactivity of resveratrol analogues: A polyphenol-protein interaction approach. Food Chemistry 219:321−28 doi: 10.1016/j.foodchem.2016.09.154 |
[20] |
le Bourvellec C, Renard CMGC. 2012. Interactions between Polyphenols and Macromolecules: Quantification Methods and Mechanisms. Critical Reviews in Food Science and Nutrition 52:213−48 doi: 10.1080/10408398.2010.499808 |
[21] |
Martinez-Gonzalez AI, Díaz-Sánchez ÁG, Rosa LA, Vargas-Requena CL, Bustos-Jaimes I, et al. 2017. Polyphenolic Compounds and Digestive Enzymes: In Vitro Non-Covalent Interactions. Molecules 22:669 doi: 10.3390/molecules22040669 |
[22] |
Fu X, Belwal T, He Y, Xu Y, Li L, et al. 2020. Interaction and binding mechanism of cyanidin-3-O-glucoside to ovalbumin in varying pH conditions: A spectroscopic and molecular docking study. Food Chemistry 320:126616 doi: 10.1016/j.foodchem.2020.126616 |
[23] |
Li D, Sun-Waterhouse D, Wang Y, Qiao X, Chen Y, et al. 2019. Interactions of Some Common Flavonoid Antioxidants. In Encyclopedia of Food Chemistry, eds. Melton L, Shahidi F, Varelis P. Amsterdam: Elsevier. pp. 644−49. https://doi.org/10.1016/B978-0-08-100596-5.21509-6 |
[24] |
Bordenave N, Hamaker BR, Ferruzzi MG. 2014. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food & Function 5:18−34 doi: 10.1039/c3fo60263j |
[25] |
Wu X, Wu H, Liu M, Liu Z, Xu H, et al. 2011. Analysis of binding interaction between (−)-epigallocatechin (EGC) and β-lactoglobulin by multi-spectroscopic method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 82:164−68 doi: 10.1016/j.saa.2011.07.028 |
[26] |
Pu P, Zheng X, Jiao L, Chen L, Yang H, et al. 2021. Six flavonoids inhibit the antigenicity of β-lactoglobulin by noncovalent interactions: A spectroscopic and molecular docking study. Food Chemistry 339:128106 doi: 10.1016/j.foodchem.2020.128106 |
[27] |
He Z, Xu M, Zeng M, Qin F, Chen J. 2016. Interactions of milk α- and β-casein with malvidin-3-O-glucoside and their effects on the stability of grape skin anthocyanin extracts. Food Chemistry 199:314−22 doi: 10.1016/j.foodchem.2015.12.035 |
[28] |
Zhang H, Yu D, Sun J, Guo H, Ding Q, et al. 2014. Interaction of milk whey protein with common phenolic acids. Journal of Molecular Structure 1058:228−33 doi: 10.1016/j.molstruc.2013.11.009 |
[29] |
Budryn G, Pałecz B, Rachwał D, Oracz J, et al. 2015. Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in β-cyclodextrin on their interactions with whey, egg white and soy protein isolates. Food Chemistry 168:276−87 doi: 10.1016/j.foodchem.2014.07.056 |
[30] |
Li X, Dai T, Hu P, Zhang C, Chen J, et al. 2020. Characterization the non-covalent interactions between beta lactoglobulin and selected phenolic acids. Food Hydrocolloids 105:105761 doi: 10.1016/j.foodhyd.2020.105761 |
[31] |
Wu S, Zhang Y, Ren F, Qin Y, Liu J, et al. 2018. Structure–affinity relationship of the interaction between phenolic acids and their derivatives and β-lactoglobulin and effect on antioxidant activity. Food Chemistry 245:613−19 doi: 10.1016/j.foodchem.2017.10.122 |
[32] |
Ghorbani Gorji E, Rocchi E, Schleining G, Bender-Bojalil D, Furtmüller PG, et al. 2015. Characterization of resveratrol–milk protein interaction. Journal of Food Engineering 167:217−25 doi: 10.1016/j.jfoodeng.2015.05.032 |
[33] |
Joye IJ, Davidov-Pardo G, Ludescher RD, McClements DJ. 2015. Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins. Food Chemistry 185:261−67 doi: 10.1016/j.foodchem.2015.03.128 |
[34] |
Cao H, Jia X, Shi J, Xiao J, Chen X. 2016. Non-covalent interaction between dietary stilbenoids and human serum albumin: Structure–affinity relationship, and its influence on the stability, free radical scavenging activity and cell uptake of stilbenoids. Food Chemistry 202:383−88 doi: 10.1016/j.foodchem.2016.02.003 |
[35] |
Soares S, Mateus N, de Freitas V. 2012. Interaction of different classes of salivary proteins with food tannins. Food Research International 49:807−13 doi: 10.1016/j.foodres.2012.09.008 |
[36] |
Ozdal T, Capanoglu E, Altay F. 2013. A review on protein–phenolic interactions and associated changes. Food Research International 51:954−70 doi: 10.1016/j.foodres.2013.02.009 |
[37] |
Quan TH, Benjakul S, Sae-Leaw T, Balange AK, Maqsood S. 2019. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends in Food Science & Technology 91:507−17 doi: 10.1016/j.jpgs.2019.07.049 |
[38] |
Wang X, Ho CT, Huang Q. 2007. Investigation of adsorption behavior of (−)-epigallocatechin gallate on bovine serum albumin surface using quartz crystal microbalance with dissipation monitoring. Journal of Agricultural and Food Chemistry 55:4987−92 doi: 10.1021/jf070590l |
[39] |
Rawel HM, Meidtner K, Kroll J. 2005. Binding of selected phenolic compounds to proteins. Journal of Agricultural and Food Chemistry 53:4228−35 doi: 10.1021/jf0480290 |
[40] |
Gharehbeglou P, Mahdi Jafari S, Aziz H, Hamed H, Habibollah M. 2019. Fabrication of double W1/O/W2 nano-emulsions loaded with oleuropein in the internal phase (W1) and evaluation of their release rate. Food Hydrocolloids 89:44−55 doi: 10.1016/j.foodhyd.2018.10.020 |
[41] |
Sari TP, Mann B, Kumar R, Singh RRB, Sharma R, et al. 2015. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids 43:540−546 doi: 10.1016/j.foodhyd.2014.07.011 |
[42] |
Kaur K, Kumar R, Mehta SK. 2015. Nanoemulsion: A new medium to study the interactions and stability of curcumin with bovine serum albumin. Journal of Molecular Liquids 209:62−70 doi: 10.1016/j.molliq.2015.05.018 |
[43] |
Gaber Ahmed GH, Fernández-González A, Díaz García ME. 2020. Nano-encapsulation of grape and apple pomace phenolic extract in chitosan and soy protein via nanoemulsification. Food Hydrocolloids 108:105806 doi: 10.1016/j.foodhyd.2020.105806 |
[44] |
Ghasemi S, Jafari SM, Assadpour E, Khomeiri M. 2018. Nanoencapsulation of D-limonene within nanocarriers produced by pectin-whey protein complexes. Food Hydrocolloids 77:152−62 doi: 10.1016/j.foodhyd.2017.09.030 |
[45] |
Arroyo-Maya IJ, McClements DJ. 2015. Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Research International 69:1−8 doi: 10.1016/j.foodres.2014.12.005 |
[46] |
Hu K, Huang X, Gao Y, Huang X, Xiao H, et al. 2015. Core–shell biopolymer nanoparticle delivery systems: Synthesis and characterization of curcumin fortified zein–pectin nanoparticles. Food Chemistry 182:275−81 doi: 10.1016/j.foodchem.2015.03.009 |
[47] |
Ha HK, Kim JW, Lee MR, Lee WJ. 2013. Formation and characterization of quercetin-loaded chitosan oligosaccharide/β-lactoglobulin nanoparticle. Food Research International 52:82−90 doi: 10.1016/j.foodres.2013.02.021 |
[48] |
Patel AR, Heussen PCM, Hazekamp J, Drost E, Velikov KP. 2012. Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium. Food Chemistry 133:423−29 doi: 10.1016/j.foodchem.2012.01.054 |
[49] |
Wijaya W, Harfieyanto RC, Dewettinck K, Patel AR, Van der Meeren P. 2019. Whey protein isolate-low methoxyl pectin nano complexes improve physicochemical and stability properties of quercetin in a model fat-free beverage. Food & Function 10:986−96 doi: 10.1039/c8fo02350f |
[50] |
Luo Y, Pan K, Zhong Q. 2015. Casein/pectin nanocomplexes as potential oral delivery vehicles. International Journal of Pharmaceutics 486:59−68 doi: 10.1016/j.ijpharm.2015.03.043 |
[51] |
Zhou M, Wang T, Hu Q, Luo Y. 2016. Low density lipoprotein/pectin complex nanogels as potential oral delivery vehicles for curcumin. Food Hydrocolloids 57:20−29 doi: 10.1016/j.foodhyd.2016.01.010 |
[52] |
Bourbon AI, Pinheiro AC, Cerqueira MA, Vicente AA. 2018. In vitro digestion of lactoferrin-glycomacropeptide nanohydrogels incorporating bioactive compounds: Effect of a chitosan coating. Food Hydrocolloids 84:267−75 doi: 10.1016/j.foodhyd.2018.06.015 |
[53] |
de Araújo Lopes A, da Fonseca FN, Rocha TM, de Freitas LB, Araújo EVO, et al. 2018. Eugenol as a promising molecule for the treatment of dermatitis: Antioxidant and Anti-inflammatory activities and its nanoformulation. Oxidative Medicine and Cellular Longevity 2018:8194849 doi: 10.1155/2018/8194849 |
[54] |
Jia Z, Dumont MJ, Orsat V. 2016. Encapsulation of phenolic compounds present in plants using protein matrices. Food Bioscience 15:87−104 doi: 10.1016/j.fbio.2016.05.007 |
[55] |
Shishir MRI, Xie L, Sun C, Zheng X, Chen W. 2018. Advances inmicro and nano-encapsulation of bioactive compounds usingbiopolymer and lipid-based transporters. Trends in Food Science &Technology 78:34−60 |
[56] |
Huang H, Belwal T, Liu S, Duan Z, Luo Z. 2019. Novel multi-phase nano-emulsion preparation for co-loading hydrophilic arbutin and hydrophobic coumaric acid using hydrocolloids. Food Hydrocolloids 93:92−101 doi: 10.1016/j.foodhyd.2019.02.023 |
[57] |
Das Purkayastha M, Manhar AK. 2016. Nanotechnological Applications in Food Packaging, Sensors and Bioactive Delivery Systems. In Nanoscience in Food and Agriculture 2. Sustainable Agriculture Reviews, eds. Ranjan S, Dasgupta N, Lichtfouse E. Vol. 2. Cham: Springer International Publishing. pp. 59−128. https://doi.org/10.1007/978-3-319-39306-3_3 |
[58] |
Huang H, Belwal T, Aalim H, Li L, Lin X, et al. 2019. Protein-polysaccharide complex coated W/O/W emulsion as secondary microcapsule for hydrophilic arbutin and hydrophobic coumaric acid. Food Chemistry 300:125171 doi: 10.1016/j.foodchem.2019.125171 |
[59] |
Singh H. 2016. Nanotechnology applications in functional foods; opportunities and challenges. Preventive Nutrition and Food Science 21:1−8 doi: 10.3746/pnf.2016.21.1.1 |
[60] |
Raei M, Shahidi F, Farhoodi M, Jafari SM, Rafe A. 2017. Application of whey protein-pectin nano-complex carriers for loading of lactoferrin. International Journal of Biological Macromolecules 105:281−91 doi: 10.1016/j.ijbiomac.2017.07.037 |
[61] |
Bacanlı M, Başaran A, Başaran N. 2015. The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin. Food and Chemical Toxicology 81:160−70 doi: 10.1016/j.fct.2015.04.015 |
[62] |
Yan J, Qiu W, Wang Y, Wu J. 2017. Biocompatible polyelectrolyte complex nanoparticles from lactoferrin and pectin as potential vehicles for antioxidative curcumin. Journal of Agricultural and Food Chemistry 65:5720−30 doi: 10.1021/acs.jafc.7b01848 |
[63] |
Cuevas-Bernardino JC, Leyva-Gutierrez FMA, Vernon-Carter EJ, Lobato-Calleros C, Román-Guerrero A, et al. 2018. Formation of biopolymer complexes composed of pea protein and mesquite gum – Impact of quercetin addition on their physical and chemical stability. Food Hydrocolloids 77:736−45 doi: 10.1016/j.foodhyd.2017.11.015 |
[64] |
Li J, Wang X, et al. 2015. Binding of (−)-epigallocatechin-3-gallate with thermally-induced bovine serum albumin/ι-carrageenan particles. Food Chemistry 168:566−71 doi: 10.1016/j.foodchem.2014.07.097 |
[65] |
Abd Elwakil MM, Mabrouk MT, Helmy MW, Abdelfattah EZA, Khiste SK, et al. 2018. Inhalable lactoferrin-chondroitin nanocomposites for combined delivery of doxorubicin and ellagic acid to lung carcinoma. Nanomedicine 13:2015−35 doi: 10.2217/nnm-2018-0039 |
[66] |
de Souza Simões L, Madalena DA, Pinheiro AC, Teixeira JA, Vicente AA, et al. 2017. Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science 243:23−45 doi: 10.1016/j.cis.2017.02.010 |
[67] |
Ahmed EM. 2015. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research 6:105−21 doi: 10.1016/j.jare.2013.07.006 |
[68] |
Zhang Z, Zhang R, Chen L, Tong Q, McClements DJ. 2015. Designing hydrogel particles for controlled or targeted release of lipophilic bioactive agents in the gastrointestinal tract. European Polymer Journal 72:698−716 doi: 10.1016/j.eurpolymj.2015.01.013 |