[1]

Biernacka P, Adamska I, Felisiak K. 2023. The potential of Ginkgo biloba as a source of biologically active compounds—a review of the recent literature and patents. Molecules 28:3993

doi: 10.3390/molecules28103993
[2]

Barbalho SM, Direito R, Laurindo LF, Marton LT, Guiguer EL, et al. 2022. Ginkgo biloba in the aging process: a narrative review. Antioxidants 11:525

doi: 10.3390/antiox11030525
[3]

Šamec D, Karalija E, Dahija S, Hassan STS. 2022. Biflavonoids: Important contributions to the health benefits of Ginkgo (Ginkgo biloba L.). Plants 11:1381

doi: 10.3390/plants11101381
[4]

Guo J, Zhou X, Wang T, Wang G, Cao F. 2020. Regulation of flavonoid metabolism in ginkgo leaves in response to different day-night temperature combinations. Plant Physiology and Biochemistry 147:133−40

doi: 10.1016/j.plaphy.2019.12.009
[5]

Xu N, Liu S, Lu Z, Pang S, Wang L, et al. 2020. Gene expression profiles and flavonoid accumulation during salt stress in Ginkgo biloba seedlings. Plants 9:1162

doi: 10.3390/plants9091162
[6]

Wang Q, Jiang Y, Mao X, Yu W, Lu J, et al. 2022. Integration of morphological physiological cytological metabolome and transcriptome analyses reveal age inhibited accumulation of flavonoid biosynthesis in Ginkgo biloba leaves. Industrial Crops and Products 187:115405

doi: 10.1016/j.indcrop.2022.115405
[7]

Falcone FML, Rius SP, Casati P. 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science 3:222

doi: 10.3389/fpls.2012.00222
[8]

Liu L, Wang Y, Zhang J, Wang S. 2021. Advances in the chemical constituents and chemical analysis of Ginkgo biloba leaf, extract, and phytopharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis 193:113704

doi: 10.1016/j.jpba.2020.113704
[9]

Liu X, Lu X, Gao W, Li P, Yang H. 2022. Structure synthesis biosynthesis and activity of the characteristic compounds from Ginkgo biloba L. Natural Product Reports 39:474−511

doi: 10.1039/D1NP00026H
[10]

Sirikantaramas S, Yamazaki M, Saito K. 2008. Mutations in topoisomerase I as a self-resistance mechanism coevolved with the production of the anticancer alkaloid camptothecin in plants. Proceedings of the National Academy of Sciences of the United States of America 105:6782−86

doi: 10.1073/pnas.0801038105
[11]

Warren JM, Bassman JH, Fellman JK, Mattinson DS, Eigenbrode S. 2003. Ultraviolet-B radiation alters phenolic salicylate and flavonoid composition of Populus trichocarpa leaves. Tree Physiology 23:527−35

doi: 10.1093/treephys/23.8.527
[12]

Zhao B, Wang L, Pang S, Jia Z, Wang L, et al. 2020. UV-B promotes flavonoid synthesis in Ginkgo biloba leaves. Industrial Crops and Products 151:112483

doi: 10.1016/j.indcrop.2020.112483
[13]

Guo Y, Gao C, Wang M, Fu F, Yousry AE, et al. 2020. Metabolome and transcriptome analyses reveal flavonoids biosynthesis differences in Ginkgo biloba associated with environmental conditions. Industrial Crops and Products 158:112963

doi: 10.1016/j.indcrop.2020.112963
[14]

Wang G, Guo X, Chang L, Cao F. 2013. Effects of air temperature and soil moisture on flavonoid accumulation in Ginkgo biloba leaves. Journal of Applied Ecology 11:3077−83

[15]

Hao G, Du X, Shi N. 2007. Exogenous nitric oxide accelerates soluble sugar, proline and secondary metabolite synthesis in Ginkgo biloba under drought stress. Journal of Plant Physiology and Molecular Biology 33:499−506

doi: 10.3321/j.issn:1671-3877.2007.06.005
[16]

Mohanta TK, Occhipinti A, Zebelo SA, Foti M, Fliegmann J, et al. 2012. Ginkgo biloba responds to herbivory by activating early signaling and direct defenses. PLoS ONE 7:e32822

doi: 10.1371/journal.pone.0032822
[17]

Guan R, Zhao Y, Zhang H, Fan G, Liu X, et al. 2016. Draft genome of the living fossil Ginkgo biloba. GigaScience 5:49

doi: 10.1186/s13742-016-0154-1
[18]

Wang L, Cui J, Jin J, Zhao J, Xu H, et al. 2020. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proceedings of the National Academy of Sciences of the United States of America 117:2201−10

doi: 10.1073/pnas.1916548117
[19]

Boateng ID. 2022. Potentialities of Ginkgo extract on toxicants toxins and radiation: a critical review. Food & Function 13:7960−83

doi: 10.1039/D2FO01298G
[20]

Tabassum NE, Das R, Lami MS, Chakraborty AJ, Mitra S, et al. 2022. Ginkgo biloba: a treasure of functional phytochemicals with multimedicinal applications. Evidence-Based Complementary and Alternative Medicine 2022:8288818

doi: 10.1155/2022/8288818
[21]

Liu Y, Xin H, Zhang Y, Che F, Shen N, et al. 2022. Leaves, seeds and exocarp of Ginkgo biloba L. (Ginkgoaceae): a comprehensive review of traditional uses, phytochemistry, pharmacology, resource utilization and toxicity. Journal of Ethnopharmacology 298:115645

doi: 10.1016/j.jep.2022.115645
[22]

Shareena G, Kumar D. 2022. Traversing through half a century research timeline on Ginkgo biloba, in transforming a botanical rarity into an active functional food ingredient. Biomedicine & Pharmacotherapy 153:113299

doi: 10.1016/j.biopha.2022.113299
[23]

Menezes JCJMDS, Diederich MF. 2021. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacological Hesearch 167:105525

doi: 10.1016/j.phrs.2021.105525
[24]

Haruyama T, Nagata K. 2013. Anti-Influenza virus activity of Ginkgo biloba leaf extracts. Journal of Natural Medicines 67:636−42

doi: 10.1007/s11418-012-0725-0
[25]

Adnan M, Rasul A, Hussain G, Shah MA, Zahoor MK, et al. 2020. Ginkgetin: a natural biflavone with versatile pharmacological activities. Food and Chemical Toxicology 145:111642

doi: 10.1016/j.fct.2020.111642
[26]

Ražná K, Sawinska Z, Ivanišová E, Vukovic N, Terentjeva M, et al. 2020. Properties of Ginkgo biloba L.: antioxidant characterization, antimicrobial activities, and genomic microRNA based marker fingerprints. International Journal of Molecular Sciences 21:3087

doi: 10.3390/ijms21093087
[27]

Achete de Souza G, Vaz de Marqui S, Matias JN, Guiguer EL, Barbalho SM. 2020. Effects of Ginkgo biloba on diseases related to oxidative stress. Planta Medica 86:376−86

doi: 10.1055/a-1109-3405
[28]

Gong G, Guan Y, Zhang Z, Rahman K, Wang S, et al. 2020. Isorhamnetin: a review of pharmacological effects. Biomedicine & Pharmacotherapy 128:110301

doi: 10.1016/j.biopha.2020.110301
[29]

Saini AS, Taliyan R, Sharma PL. 2014. Protective effect and mechanism of Ginkgo biloba extract-EGb 761 on STZ-induced diabetic cardiomyopathy in rats. Pharmacognosy Magazine 10:172−78

doi: 10.4103/0973-1296.131031
[30]

Chen T, Wei L, Guan X, Huang C, Liu Z, et al. 2019. Biflavones from Ginkgo biloba as inhibitors of human thrombin. Bioorganic Chemistry 92:103199

doi: 10.1016/j.bioorg.2019.103199
[31]

Guo Y, Wang T, Fu F, El-Kassaby YA, Wang G. 2020. Temporospatial flavonoids metabolism variation in Ginkgo biloba leaves. Frontiers in Genetics 11:589326

doi: 10.3389/fgene.2020.589326
[32]

Chen X, Chen X, Jia G, Jiang H. 2015. Content variation of flavonol glucoside and terpene lactones in Ginkgo biloba leaves from different growth periods. Natural Product Research and Development 27:60−64

[33]

Wu Z, Wang Q, Tian M, Wang Y, He J. 2017. Analysis on the content of flavonoids, terpene lactones and ginkgo acid in different parts in Ginkgo biloba. Journal of Mountain Agriculture and Biology 36:72−75

doi: 10.15958/j.cnki.sdnyswxb.2017.04.013
[34]

Beck S, Stengel J. 2016. Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L. Phytochemistry 130:201−06

doi: 10.1016/j.phytochem.2016.05.005
[35]

Li B, Neumann EK, Ge J, Gao W, Yang H, et al. 2018. Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging. Plant, Cell & Environment 41:2693−703

doi: 10.1111/pce.13395
[36]

Cheng S, Gu M, Shu H. 2000. Advances in research on flaconoids in Ginkgo biloba leaf. Scientia Silvae Sinicae 36:110−15

[37]

Yan J, Zhang S, Tong M, Lu J, Wang T, et al. 2021. Physiological and genetic analysis of leaves from the resprouters of an old Ginkgo biloba tree. Forests 12:1255

doi: 10.3390/f12091255
[38]

Lu Z, Zhu L, Lu J, Shen N, Wang L, et al. 2022. Rejuvenation increases leaf biomass and flavonoid accumulation in Ginkgo biloba. Horticulture Research 9:uhab018

doi: 10.1093/hr/uhab018
[39]

Liu S, Meng Z, Zhang H, Chu Y, Qiu Y, et al. 2022. Identification and characterization of thirteen gene families involved in flavonoid biosynthesis in Ginkgo biloba. Industrial Crops and Products 188:115576

doi: 10.1016/j.indcrop.2022.115576
[40]

Chang B, Ma K, Lu Z, Lu J, Cui J, et al. 2020. Physiological, transcriptomic, and metabolic responses of Ginkgo biloba L. to drought, salt, and heat stresses. Biomolecules 10:1635

doi: 10.3390/biom10121635
[41]

Wang G, Zhang L, Wang G, Cao F. 2022. Growth and flavonol accumulation of Ginkgo biloba leaves affected by red and blue light. Industrial Crops and Products 187:115488

doi: 10.1016/j.indcrop.2022.115488
[42]

Ni J, Dong L, Jiang Z, Yang X, Sun Z, et al. 2018. Salicylic acid-induced flavonoid accumulation in Ginkgo biloba leaves is dependent on red and far-red light. Industrial Crops and Products 118:102−10

doi: 10.1016/j.indcrop.2018.03.044
[43]

Sun M, Gu X, Fu H, Zhang L, Chen R, et al. 2010. Change of secondary metabolites in leaves of Ginkgo biloba L. in response to UV-B induction. Innovative Food Science & Emerging Technologies 11:672−76

doi: 10.1016/j.ifset.2010.08.006
[44]

Zou K, Liu X, Zhang D, Yang Q, Fu S, et al. 2019. Flavonoid biosynthesis is likely more susceptible to elevation and tree age than other branch pathways involved in phenylpropanoid biosynthesis in Ginkgo leaves. Frontiers in Plant Science 10:983

doi: 10.3389/fpls.2019.00983
[45]

Yu W, Liu H, Luo J, Zhang S, Xiang P, et al. 2022. Partial root-zone simulated drought induces greater flavonoid accumulation than full root-zone simulated water deficiency in the leaves of Ginkgo biloba. Environmental and Experimental Botany 201:104998

doi: 10.1016/j.envexpbot.2022.104998
[46]

Wang L, Shi H, Wu J, Cao F. 2016. Alternative partial root-zone irrigation enhances leaf flavonoid accumulation and water use efficiency of Ginkgo biloba. New Forests 47:377−91

doi: 10.1007/s11056-015-9521-5
[47]

Liu H, Wang X, Wang G, Cui P, Wu S, et al. 2021. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. Nature Plants 7:748−56

doi: 10.1038/s41477-021-00933-x
[48]

Liu H, Cao F, Yin T, Chen Y. 2017. A highly dense genetic map for Ginkgo biloba constructed using sequence-based markers. Frontiers in Plant Science 8:1041

doi: 10.3389/fpls.2017.01041
[49]

Gharibi S, Sayed Tabatabaei BE, Saeidi G, Talebi M, Matkowski A. 2019. The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.f. Phytochemistry 162:90−98

doi: 10.1016/j.phytochem.2019.03.004
[50]

Yuan Y, Zhang J, Liu X, Meng M, Wang J, et al. 2020. Tissue-specific transcriptome for Dendrobium officinale reveals genes involved in flavonoid biosynthesis. Genomics 112:1781−94

doi: 10.1016/j.ygeno.2019.10.010
[51]

Xu F, Cai R, Cheng S, Du H, Wang Y, et al. 2008. Molecular cloning characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba. African Journal of Biotechnology 7:721−29

doi: 10.5897/AJB2008.000-5022
[52]

Chen Y, Lin F, Yang H, Yue L, Hu F, et al. 2014. Effect of varying NaCl doses on flavonoid production in suspension cells of Ginkgo biloba: relationship to chlorophyll fluorescence, ion homeostasis, antioxidant system and ultrastructure. Acta Physiologiae Plantarum 36:3173−87

doi: 10.1007/s11738-014-1684-8
[53]

Pang Y, Shen G, Wu W, Liu X, Lin J, et al. 2005. Characterization and expression of chalcone synthase gene from Ginkgo biloba. Plant Science 168:1525−31

doi: 10.1016/j.plantsci.2005.02.003
[54]

Xu F, Li L, Zhang W, Chen H, Sun N, et al. 2012. Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba. Molecular Biology Reports 39:2285−96

doi: 10.1007/s11033-011-0978-9
[55]

Ye Z, Shen W, Liu M, Wang T, Zhang X, et al. 2023. Effect of R2R3-MYB transcription factor citMYB21 on flavonoids biosynthesis in Citrus. Acta Horticulturae Sinica 50:250−64

doi: 10.16420/j.issn.0513-353x.2021-1188
[56]

Pratyusha DS, Sarad DVL. 2022. MYB transcription factors—master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Reports 41:2245−60

doi: 10.1007/s00299-022-02927-1
[57]

Xu F, Cheng H, Cai R, Li L, Chang J, et al. 2008. Molecular cloning and function analysis of an anthocyanidin synthase gene from Ginkgo biloba, and its expression in abiotic stress responses. Molecules and Cells 26:536−47

[58]

Zhang W, Xu F, Cheng S, Liao Y. 2018. Characterization and functional analysis of a MYB gene (GbMYBFL) related to flavonoid accumulation in Ginkgo biloba. Genes & Genomics 40:49−61

doi: 10.1007/s13258-017-0609-5
[59]

Su X, Xia Y, Jiang W, Shen G, Pang Y. 2020. GbMYBR1 from Ginkgo biloba represses phenylpropanoid biosynthesis and trichome development in Arabidopsis. Planta 252:68

doi: 10.1007/s00425-020-03476-1
[60]

Xu F, Ning Y, Zhang W, Liao Y, Li L, et al. 2014. An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba. Functional & Integrative Genomics 14:177−89

doi: 10.1007/s10142-013-0352-1
[61]

Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, et al. 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell 26:962−80

doi: 10.1105/tpc.113.122069
[62]

Li X, Cao L, Jiao B, Yang H, Ma C, et al. 2022. The bHLH transcription factor AcB2 regulates anthocyanin biosynthesis in onion (Allium cepa L.). Horticulture Research 9:uhac128

doi: 10.1093/hr/uhac128
[63]

Hichri I, Heppel SC, Pillet J, Léon C, Czemmel S, et al. 2010. The basic Helix-loop-Helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Molecular Plant 3:509−23

doi: 10.1093/mp/ssp118
[64]

Strygina KV, Khlestkina EK. 2019. Structural and functional organization and evolution of the WD40 genes involved in the regulation of flavonoid biosynthesis in the Triticeae Tribe. Russian Journal of Genetics 55:1398−405

doi: 10.1134/S1022795419110152
[65]

Zheng J, Liao Y, Xu F, Zhou X, Ye J, et al. 2021. Genome-wide identification of WD40 superfamily genes and prediction of WD40 genes involved in flavonoid biosynthesis in Ginkgo biloba. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49:12086

doi: 10.15835/nbha49212086
[66]

Xin Y, Wu Y, Han X, Xu L. 2021. Overexpression of the Ginkgo biloba WD40 gene GbLWD1-like improves salt tolerance in transgenic Populus. Plant Science 313:111092

doi: 10.1016/j.plantsci.2021.111092
[67]

Sun Q, Jiang S, Zhang T, Xu H, Fang H, et al. 2019. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11. Plant Science 289:110286

doi: 10.1016/j.plantsci.2019.110286
[68]

Malacarne G; Coller E, Czemmel S, Vrhovsek U, Engelen K, et al. 2016. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. Journal of Experimental Botany 67:3509−22

doi: 10.1093/jxb/erw181
[69]

Wu Y, Guo J, Zhou Q, Xin Y, Wang G, et al. 2018. De novo transcriptome analysis revealed genes involved in flavonoid biosynthesis transport and regulation in Ginkgo biloba. Industrial Crops and Products 124:226−35

doi: 10.1016/j.indcrop.2018.07.060
[70]

Li Y, Han H, Fu M, Zhou X, Ye J, et al. 2022. Genome-wide identification and expression analysis of NAC family genes in Ginkgo biloba L. Plant Biology 25:107−18

doi: 10.1111/plb.13486
[71]

Han H, Xu F, Li Y, Yu L, Fu M, et al. 2021. Genome-wide characterization of bZIP gene family identifies potential members involved in flavonoids biosynthesis in Ginkgo biloba L. Scientific Reports 11:23420

doi: 10.1038/s41598-021-02839-2
[72]

González-Grandío E, Cubas P. 2016. Chapter 9 - TCP transcription factors: evolution, structure, and biochemical function. In Plant Transcription Factors, ed. Gonzalez DH. USA: Academic Press. 9: 139-51. https://doi.org/10.1016/B978-0-12-800854-6.00009-9

[73]

Yu L, Chen Q, Zheng J, Xu F, Ye J, et al. 2022. Genome-wide identification and expression pattern analysis of the TCP transcription factor family in Ginkgo biloba. Plant Signaling & Behavior 17:1994248

doi: 10.1080/15592324.2021.1994248
[74]

Deng Y, Lu S. 2017. Biosynthesis and regulation of phenylpropanoids in plants. Critical Reviews in Plant Sciences 36:257−90

doi: 10.1080/07352689.2017.1402852
[75]

Liu S, Wang L, Cao M, Pang S, Li W, et al. 2020. Identification and characterization of long non-coding RNAs regulating flavonoid biosynthesis in Ginkgo biloba leaves. Industrial Crops and Products 158:112980

doi: 10.1016/j.indcrop.2020.112980
[76]

Wang L, Zhao J, Zhang M, Li W, Luo K, et al. 2015. Identification and characterization of microRNA expression in Ginkgo biloba L. leaves. Tree Genetics & Genomes 11:76

doi: 10.1007/s11295-015-0897-3
[77]

Li W, He Z, Yang S, Ye Y, Jiang H, et al. 2019. Construction and analysis of a library of miRNA in gold-coloured mutant leaves of Ginkgo biloba L. Folia Horticulturae 31:81−92

doi: 10.2478/fhort-2019-0005
[78]

Laurent GS, Wahlestedt C, Kapranov P. 2015. The Landscape of long non coding RNA classification. Trends in Genetics 31:239−51

doi: 10.1016/j.tig.2015.03.007
[79]

Cheng H, Li L, Cheng S, Cao F, Wang Y, et al. 2011. Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba. Plant Cell Reports 30:49−62

doi: 10.1007/s00299-010-0943-4
[80]

Wang L, Xia X, Jiang H, Lu Z, Cui J, et al. 2018. Genome-wide identification and characterization of novel lncRNAs in Ginkgo biloba. Trees 32:1429−42

doi: 10.1007/s00468-018-1724-x