[1]
|
Biernacka P, Adamska I, Felisiak K. 2023. The potential of Ginkgo biloba as a source of biologically active compounds—a review of the recent literature and patents. Molecules 28:3993 doi: 10.3390/molecules28103993
CrossRef Google Scholar
|
[2]
|
Barbalho SM, Direito R, Laurindo LF, Marton LT, Guiguer EL, et al. 2022. Ginkgo biloba in the aging process: a narrative review. Antioxidants 11:525 doi: 10.3390/antiox11030525
CrossRef Google Scholar
|
[3]
|
Šamec D, Karalija E, Dahija S, Hassan STS. 2022. Biflavonoids: Important contributions to the health benefits of Ginkgo (Ginkgo biloba L.). Plants 11:1381 doi: 10.3390/plants11101381
CrossRef Google Scholar
|
[4]
|
Guo J, Zhou X, Wang T, Wang G, Cao F. 2020. Regulation of flavonoid metabolism in ginkgo leaves in response to different day-night temperature combinations. Plant Physiology and Biochemistry 147:133−40 doi: 10.1016/j.plaphy.2019.12.009
CrossRef Google Scholar
|
[5]
|
Xu N, Liu S, Lu Z, Pang S, Wang L, et al. 2020. Gene expression profiles and flavonoid accumulation during salt stress in Ginkgo biloba seedlings. Plants 9:1162 doi: 10.3390/plants9091162
CrossRef Google Scholar
|
[6]
|
Wang Q, Jiang Y, Mao X, Yu W, Lu J, et al. 2022. Integration of morphological physiological cytological metabolome and transcriptome analyses reveal age inhibited accumulation of flavonoid biosynthesis in Ginkgo biloba leaves. Industrial Crops and Products 187:115405 doi: 10.1016/j.indcrop.2022.115405
CrossRef Google Scholar
|
[7]
|
Falcone FML, Rius SP, Casati P. 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science 3:222 doi: 10.3389/fpls.2012.00222
CrossRef Google Scholar
|
[8]
|
Liu L, Wang Y, Zhang J, Wang S. 2021. Advances in the chemical constituents and chemical analysis of Ginkgo biloba leaf, extract, and phytopharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis 193:113704 doi: 10.1016/j.jpba.2020.113704
CrossRef Google Scholar
|
[9]
|
Liu X, Lu X, Gao W, Li P, Yang H. 2022. Structure synthesis biosynthesis and activity of the characteristic compounds from Ginkgo biloba L. Natural Product Reports 39:474−511 doi: 10.1039/D1NP00026H
CrossRef Google Scholar
|
[10]
|
Sirikantaramas S, Yamazaki M, Saito K. 2008. Mutations in topoisomerase I as a self-resistance mechanism coevolved with the production of the anticancer alkaloid camptothecin in plants. Proceedings of the National Academy of Sciences of the United States of America 105:6782−86 doi: 10.1073/pnas.0801038105
CrossRef Google Scholar
|
[11]
|
Warren JM, Bassman JH, Fellman JK, Mattinson DS, Eigenbrode S. 2003. Ultraviolet-B radiation alters phenolic salicylate and flavonoid composition of Populus trichocarpa leaves. Tree Physiology 23:527−35 doi: 10.1093/treephys/23.8.527
CrossRef Google Scholar
|
[12]
|
Zhao B, Wang L, Pang S, Jia Z, Wang L, et al. 2020. UV-B promotes flavonoid synthesis in Ginkgo biloba leaves. Industrial Crops and Products 151:112483 doi: 10.1016/j.indcrop.2020.112483
CrossRef Google Scholar
|
[13]
|
Guo Y, Gao C, Wang M, Fu F, Yousry AE, et al. 2020. Metabolome and transcriptome analyses reveal flavonoids biosynthesis differences in Ginkgo biloba associated with environmental conditions. Industrial Crops and Products 158:112963 doi: 10.1016/j.indcrop.2020.112963
CrossRef Google Scholar
|
[14]
|
Wang G, Guo X, Chang L, Cao F. 2013. Effects of air temperature and soil moisture on flavonoid accumulation in Ginkgo biloba leaves. Journal of Applied Ecology 11:3077−83
Google Scholar
|
[15]
|
Hao G, Du X, Shi N. 2007. Exogenous nitric oxide accelerates soluble sugar, proline and secondary metabolite synthesis in Ginkgo biloba under drought stress. Journal of Plant Physiology and Molecular Biology 33:499−506 doi: 10.3321/j.issn:1671-3877.2007.06.005
CrossRef Google Scholar
|
[16]
|
Mohanta TK, Occhipinti A, Zebelo SA, Foti M, Fliegmann J, et al. 2012. Ginkgo biloba responds to herbivory by activating early signaling and direct defenses. PLoS ONE 7:e32822 doi: 10.1371/journal.pone.0032822
CrossRef Google Scholar
|
[17]
|
Guan R, Zhao Y, Zhang H, Fan G, Liu X, et al. 2016. Draft genome of the living fossil Ginkgo biloba. GigaScience 5:49 doi: 10.1186/s13742-016-0154-1
CrossRef Google Scholar
|
[18]
|
Wang L, Cui J, Jin J, Zhao J, Xu H, et al. 2020. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proceedings of the National Academy of Sciences of the United States of America 117:2201−10 doi: 10.1073/pnas.1916548117
CrossRef Google Scholar
|
[19]
|
Boateng ID. 2022. Potentialities of Ginkgo extract on toxicants toxins and radiation: a critical review. Food & Function 13:7960−83 doi: 10.1039/D2FO01298G
CrossRef Google Scholar
|
[20]
|
Tabassum NE, Das R, Lami MS, Chakraborty AJ, Mitra S, et al. 2022. Ginkgo biloba: a treasure of functional phytochemicals with multimedicinal applications. Evidence-Based Complementary and Alternative Medicine 2022:8288818 doi: 10.1155/2022/8288818
CrossRef Google Scholar
|
[21]
|
Liu Y, Xin H, Zhang Y, Che F, Shen N, et al. 2022. Leaves, seeds and exocarp of Ginkgo biloba L. (Ginkgoaceae): a comprehensive review of traditional uses, phytochemistry, pharmacology, resource utilization and toxicity. Journal of Ethnopharmacology 298:115645 doi: 10.1016/j.jep.2022.115645
CrossRef Google Scholar
|
[22]
|
Shareena G, Kumar D. 2022. Traversing through half a century research timeline on Ginkgo biloba, in transforming a botanical rarity into an active functional food ingredient. Biomedicine & Pharmacotherapy 153:113299 doi: 10.1016/j.biopha.2022.113299
CrossRef Google Scholar
|
[23]
|
Menezes JCJMDS, Diederich MF. 2021. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacological Hesearch 167:105525 doi: 10.1016/j.phrs.2021.105525
CrossRef Google Scholar
|
[24]
|
Haruyama T, Nagata K. 2013. Anti-Influenza virus activity of Ginkgo biloba leaf extracts. Journal of Natural Medicines 67:636−42 doi: 10.1007/s11418-012-0725-0
CrossRef Google Scholar
|
[25]
|
Adnan M, Rasul A, Hussain G, Shah MA, Zahoor MK, et al. 2020. Ginkgetin: a natural biflavone with versatile pharmacological activities. Food and Chemical Toxicology 145:111642 doi: 10.1016/j.fct.2020.111642
CrossRef Google Scholar
|
[26]
|
Ražná K, Sawinska Z, Ivanišová E, Vukovic N, Terentjeva M, et al. 2020. Properties of Ginkgo biloba L.: antioxidant characterization, antimicrobial activities, and genomic microRNA based marker fingerprints. International Journal of Molecular Sciences 21:3087 doi: 10.3390/ijms21093087
CrossRef Google Scholar
|
[27]
|
Achete de Souza G, Vaz de Marqui S, Matias JN, Guiguer EL, Barbalho SM. 2020. Effects of Ginkgo biloba on diseases related to oxidative stress. Planta Medica 86:376−86 doi: 10.1055/a-1109-3405
CrossRef Google Scholar
|
[28]
|
Gong G, Guan Y, Zhang Z, Rahman K, Wang S, et al. 2020. Isorhamnetin: a review of pharmacological effects. Biomedicine & Pharmacotherapy 128:110301 doi: 10.1016/j.biopha.2020.110301
CrossRef Google Scholar
|
[29]
|
Saini AS, Taliyan R, Sharma PL. 2014. Protective effect and mechanism of Ginkgo biloba extract-EGb 761 on STZ-induced diabetic cardiomyopathy in rats. Pharmacognosy Magazine 10:172−78 doi: 10.4103/0973-1296.131031
CrossRef Google Scholar
|
[30]
|
Chen T, Wei L, Guan X, Huang C, Liu Z, et al. 2019. Biflavones from Ginkgo biloba as inhibitors of human thrombin. Bioorganic Chemistry 92:103199 doi: 10.1016/j.bioorg.2019.103199
CrossRef Google Scholar
|
[31]
|
Guo Y, Wang T, Fu F, El-Kassaby YA, Wang G. 2020. Temporospatial flavonoids metabolism variation in Ginkgo biloba leaves. Frontiers in Genetics 11:589326 doi: 10.3389/fgene.2020.589326
CrossRef Google Scholar
|
[32]
|
Chen X, Chen X, Jia G, Jiang H. 2015. Content variation of flavonol glucoside and terpene lactones in Ginkgo biloba leaves from different growth periods. Natural Product Research and Development 27:60−64
Google Scholar
|
[33]
|
Wu Z, Wang Q, Tian M, Wang Y, He J. 2017. Analysis on the content of flavonoids, terpene lactones and ginkgo acid in different parts in Ginkgo biloba. Journal of Mountain Agriculture and Biology 36:72−75 doi: 10.15958/j.cnki.sdnyswxb.2017.04.013
CrossRef Google Scholar
|
[34]
|
Beck S, Stengel J. 2016. Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L. Phytochemistry 130:201−06 doi: 10.1016/j.phytochem.2016.05.005
CrossRef Google Scholar
|
[35]
|
Li B, Neumann EK, Ge J, Gao W, Yang H, et al. 2018. Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging. Plant, Cell & Environment 41:2693−703 doi: 10.1111/pce.13395
CrossRef Google Scholar
|
[36]
|
Cheng S, Gu M, Shu H. 2000. Advances in research on flaconoids in Ginkgo biloba leaf. Scientia Silvae Sinicae 36:110−15
Google Scholar
|
[37]
|
Yan J, Zhang S, Tong M, Lu J, Wang T, et al. 2021. Physiological and genetic analysis of leaves from the resprouters of an old Ginkgo biloba tree. Forests 12:1255 doi: 10.3390/f12091255
CrossRef Google Scholar
|
[38]
|
Lu Z, Zhu L, Lu J, Shen N, Wang L, et al. 2022. Rejuvenation increases leaf biomass and flavonoid accumulation in Ginkgo biloba. Horticulture Research 9:uhab018 doi: 10.1093/hr/uhab018
CrossRef Google Scholar
|
[39]
|
Liu S, Meng Z, Zhang H, Chu Y, Qiu Y, et al. 2022. Identification and characterization of thirteen gene families involved in flavonoid biosynthesis in Ginkgo biloba. Industrial Crops and Products 188:115576 doi: 10.1016/j.indcrop.2022.115576
CrossRef Google Scholar
|
[40]
|
Chang B, Ma K, Lu Z, Lu J, Cui J, et al. 2020. Physiological, transcriptomic, and metabolic responses of Ginkgo biloba L. to drought, salt, and heat stresses. Biomolecules 10:1635 doi: 10.3390/biom10121635
CrossRef Google Scholar
|
[41]
|
Wang G, Zhang L, Wang G, Cao F. 2022. Growth and flavonol accumulation of Ginkgo biloba leaves affected by red and blue light. Industrial Crops and Products 187:115488 doi: 10.1016/j.indcrop.2022.115488
CrossRef Google Scholar
|
[42]
|
Ni J, Dong L, Jiang Z, Yang X, Sun Z, et al. 2018. Salicylic acid-induced flavonoid accumulation in Ginkgo biloba leaves is dependent on red and far-red light. Industrial Crops and Products 118:102−10 doi: 10.1016/j.indcrop.2018.03.044
CrossRef Google Scholar
|
[43]
|
Sun M, Gu X, Fu H, Zhang L, Chen R, et al. 2010. Change of secondary metabolites in leaves of Ginkgo biloba L. in response to UV-B induction. Innovative Food Science & Emerging Technologies 11:672−76 doi: 10.1016/j.ifset.2010.08.006
CrossRef Google Scholar
|
[44]
|
Zou K, Liu X, Zhang D, Yang Q, Fu S, et al. 2019. Flavonoid biosynthesis is likely more susceptible to elevation and tree age than other branch pathways involved in phenylpropanoid biosynthesis in Ginkgo leaves. Frontiers in Plant Science 10:983 doi: 10.3389/fpls.2019.00983
CrossRef Google Scholar
|
[45]
|
Yu W, Liu H, Luo J, Zhang S, Xiang P, et al. 2022. Partial root-zone simulated drought induces greater flavonoid accumulation than full root-zone simulated water deficiency in the leaves of Ginkgo biloba. Environmental and Experimental Botany 201:104998 doi: 10.1016/j.envexpbot.2022.104998
CrossRef Google Scholar
|
[46]
|
Wang L, Shi H, Wu J, Cao F. 2016. Alternative partial root-zone irrigation enhances leaf flavonoid accumulation and water use efficiency of Ginkgo biloba. New Forests 47:377−91 doi: 10.1007/s11056-015-9521-5
CrossRef Google Scholar
|
[47]
|
Liu H, Wang X, Wang G, Cui P, Wu S, et al. 2021. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. Nature Plants 7:748−56 doi: 10.1038/s41477-021-00933-x
CrossRef Google Scholar
|
[48]
|
Liu H, Cao F, Yin T, Chen Y. 2017. A highly dense genetic map for Ginkgo biloba constructed using sequence-based markers. Frontiers in Plant Science 8:1041 doi: 10.3389/fpls.2017.01041
CrossRef Google Scholar
|
[49]
|
Gharibi S, Sayed Tabatabaei BE, Saeidi G, Talebi M, Matkowski A. 2019. The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.f. Phytochemistry 162:90−98 doi: 10.1016/j.phytochem.2019.03.004
CrossRef Google Scholar
|
[50]
|
Yuan Y, Zhang J, Liu X, Meng M, Wang J, et al. 2020. Tissue-specific transcriptome for Dendrobium officinale reveals genes involved in flavonoid biosynthesis. Genomics 112:1781−94 doi: 10.1016/j.ygeno.2019.10.010
CrossRef Google Scholar
|
[51]
|
Xu F, Cai R, Cheng S, Du H, Wang Y, et al. 2008. Molecular cloning characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba. African Journal of Biotechnology 7:721−29 doi: 10.5897/AJB2008.000-5022
CrossRef Google Scholar
|
[52]
|
Chen Y, Lin F, Yang H, Yue L, Hu F, et al. 2014. Effect of varying NaCl doses on flavonoid production in suspension cells of Ginkgo biloba: relationship to chlorophyll fluorescence, ion homeostasis, antioxidant system and ultrastructure. Acta Physiologiae Plantarum 36:3173−87 doi: 10.1007/s11738-014-1684-8
CrossRef Google Scholar
|
[53]
|
Pang Y, Shen G, Wu W, Liu X, Lin J, et al. 2005. Characterization and expression of chalcone synthase gene from Ginkgo biloba. Plant Science 168:1525−31 doi: 10.1016/j.plantsci.2005.02.003
CrossRef Google Scholar
|
[54]
|
Xu F, Li L, Zhang W, Chen H, Sun N, et al. 2012. Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba. Molecular Biology Reports 39:2285−96 doi: 10.1007/s11033-011-0978-9
CrossRef Google Scholar
|
[55]
|
Ye Z, Shen W, Liu M, Wang T, Zhang X, et al. 2023. Effect of R2R3-MYB transcription factor citMYB21 on flavonoids biosynthesis in Citrus. Acta Horticulturae Sinica 50:250−64 doi: 10.16420/j.issn.0513-353x.2021-1188
CrossRef Google Scholar
|
[56]
|
Pratyusha DS, Sarad DVL. 2022. MYB transcription factors—master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Reports 41:2245−60 doi: 10.1007/s00299-022-02927-1
CrossRef Google Scholar
|
[57]
|
Xu F, Cheng H, Cai R, Li L, Chang J, et al. 2008. Molecular cloning and function analysis of an anthocyanidin synthase gene from Ginkgo biloba, and its expression in abiotic stress responses. Molecules and Cells 26:536−47
Google Scholar
|
[58]
|
Zhang W, Xu F, Cheng S, Liao Y. 2018. Characterization and functional analysis of a MYB gene (GbMYBFL) related to flavonoid accumulation in Ginkgo biloba. Genes & Genomics 40:49−61 doi: 10.1007/s13258-017-0609-5
CrossRef Google Scholar
|
[59]
|
Su X, Xia Y, Jiang W, Shen G, Pang Y. 2020. GbMYBR1 from Ginkgo biloba represses phenylpropanoid biosynthesis and trichome development in Arabidopsis. Planta 252:68 doi: 10.1007/s00425-020-03476-1
CrossRef Google Scholar
|
[60]
|
Xu F, Ning Y, Zhang W, Liao Y, Li L, et al. 2014. An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba. Functional & Integrative Genomics 14:177−89 doi: 10.1007/s10142-013-0352-1
CrossRef Google Scholar
|
[61]
|
Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, et al. 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell 26:962−80 doi: 10.1105/tpc.113.122069
CrossRef Google Scholar
|
[62]
|
Li X, Cao L, Jiao B, Yang H, Ma C, et al. 2022. The bHLH transcription factor AcB2 regulates anthocyanin biosynthesis in onion (Allium cepa L.). Horticulture Research 9:uhac128 doi: 10.1093/hr/uhac128
CrossRef Google Scholar
|
[63]
|
Hichri I, Heppel SC, Pillet J, Léon C, Czemmel S, et al. 2010. The basic Helix-loop-Helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Molecular Plant 3:509−23 doi: 10.1093/mp/ssp118
CrossRef Google Scholar
|
[64]
|
Strygina KV, Khlestkina EK. 2019. Structural and functional organization and evolution of the WD40 genes involved in the regulation of flavonoid biosynthesis in the Triticeae Tribe. Russian Journal of Genetics 55:1398−405 doi: 10.1134/S1022795419110152
CrossRef Google Scholar
|
[65]
|
Zheng J, Liao Y, Xu F, Zhou X, Ye J, et al. 2021. Genome-wide identification of WD40 superfamily genes and prediction of WD40 genes involved in flavonoid biosynthesis in Ginkgo biloba. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49:12086 doi: 10.15835/nbha49212086
CrossRef Google Scholar
|
[66]
|
Xin Y, Wu Y, Han X, Xu L. 2021. Overexpression of the Ginkgo biloba WD40 gene GbLWD1-like improves salt tolerance in transgenic Populus. Plant Science 313:111092 doi: 10.1016/j.plantsci.2021.111092
CrossRef Google Scholar
|
[67]
|
Sun Q, Jiang S, Zhang T, Xu H, Fang H, et al. 2019. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11. Plant Science 289:110286 doi: 10.1016/j.plantsci.2019.110286
CrossRef Google Scholar
|
[68]
|
Malacarne G; Coller E, Czemmel S, Vrhovsek U, Engelen K, et al. 2016. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. Journal of Experimental Botany 67:3509−22 doi: 10.1093/jxb/erw181
CrossRef Google Scholar
|
[69]
|
Wu Y, Guo J, Zhou Q, Xin Y, Wang G, et al. 2018. De novo transcriptome analysis revealed genes involved in flavonoid biosynthesis transport and regulation in Ginkgo biloba. Industrial Crops and Products 124:226−35 doi: 10.1016/j.indcrop.2018.07.060
CrossRef Google Scholar
|
[70]
|
Li Y, Han H, Fu M, Zhou X, Ye J, et al. 2022. Genome-wide identification and expression analysis of NAC family genes in Ginkgo biloba L. Plant Biology 25:107−18 doi: 10.1111/plb.13486
CrossRef Google Scholar
|
[71]
|
Han H, Xu F, Li Y, Yu L, Fu M, et al. 2021. Genome-wide characterization of bZIP gene family identifies potential members involved in flavonoids biosynthesis in Ginkgo biloba L. Scientific Reports 11:23420 doi: 10.1038/s41598-021-02839-2
CrossRef Google Scholar
|
[72]
|
González-Grandío E, Cubas P. 2016. Chapter 9 - TCP transcription factors: evolution, structure, and biochemical function. In Plant Transcription Factors, ed. Gonzalez DH. USA: Academic Press. 9: 139-51. https://doi.org/10.1016/B978-0-12-800854-6.00009-9
|
[73]
|
Yu L, Chen Q, Zheng J, Xu F, Ye J, et al. 2022. Genome-wide identification and expression pattern analysis of the TCP transcription factor family in Ginkgo biloba. Plant Signaling & Behavior 17:1994248 doi: 10.1080/15592324.2021.1994248
CrossRef Google Scholar
|
[74]
|
Deng Y, Lu S. 2017. Biosynthesis and regulation of phenylpropanoids in plants. Critical Reviews in Plant Sciences 36:257−90 doi: 10.1080/07352689.2017.1402852
CrossRef Google Scholar
|
[75]
|
Liu S, Wang L, Cao M, Pang S, Li W, et al. 2020. Identification and characterization of long non-coding RNAs regulating flavonoid biosynthesis in Ginkgo biloba leaves. Industrial Crops and Products 158:112980 doi: 10.1016/j.indcrop.2020.112980
CrossRef Google Scholar
|
[76]
|
Wang L, Zhao J, Zhang M, Li W, Luo K, et al. 2015. Identification and characterization of microRNA expression in Ginkgo biloba L. leaves. Tree Genetics & Genomes 11:76 doi: 10.1007/s11295-015-0897-3
CrossRef Google Scholar
|
[77]
|
Li W, He Z, Yang S, Ye Y, Jiang H, et al. 2019. Construction and analysis of a library of miRNA in gold-coloured mutant leaves of Ginkgo biloba L. Folia Horticulturae 31:81−92 doi: 10.2478/fhort-2019-0005
CrossRef Google Scholar
|
[78]
|
Laurent GS, Wahlestedt C, Kapranov P. 2015. The Landscape of long non coding RNA classification. Trends in Genetics 31:239−51 doi: 10.1016/j.tig.2015.03.007
CrossRef Google Scholar
|
[79]
|
Cheng H, Li L, Cheng S, Cao F, Wang Y, et al. 2011. Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba. Plant Cell Reports 30:49−62 doi: 10.1007/s00299-010-0943-4
CrossRef Google Scholar
|
[80]
|
Wang L, Xia X, Jiang H, Lu Z, Cui J, et al. 2018. Genome-wide identification and characterization of novel lncRNAs in Ginkgo biloba. Trees 32:1429−42 doi: 10.1007/s00468-018-1724-x
CrossRef Google Scholar
|