[1]

Muñiz Díaz de León ME, Mendoza-Ruíz A, Pérez-García B. 2007. Usos de los helechos y plantas afines. Etnobiología 5:117−25. https://dialnet.unirioja.es/descarga/articulo/5294471.pdf

[2]

Velázquez Montes E, Aguirre Hernández E. 2015. Los helechos como plantas ornamentales. Ciencia 00:25−31. www.revistaciencia.amc.edu.mx/images/revista/66_3/PDF/Helechos.pdf

[3]

Giudice G. 2009. Biodiversidad y conservación de las pteridofitas de Argentina. XXXII Jornadas Argentinas de Botánica Huerta Grande, Córdoba. 2013:10−11. https://botanicaargentina.org.ar/wp-content/uploads/2017/07/Sab_suplemento-Huerta-Grande-_2009-1.pdf

[4]

Mazzoni A. 2015. Caracterización de flora nativa con aptitud para follaje de corte en Patagonia Sur: el caso de Polystichum plicatum. Magister Scientiae Thesis. FCA UNLZ. 67 pp. http://agrarias.unlz.edu.ar/web18/wp-content/uploads/2020/06/Trabajo-Final_-Ariel-Mazzoni.pdf.pdf

[5]

Rodriguez AM, Derita M, Cartagena E, Hernández MA, Bardón A. 2022. Complex flavonoids of Pityrogramma trifoliata: Absolute configuration, antifungal effects, and localization in the plant. Natural Product Communications 17(10):1934578X221114755

doi: 10.1177/1934578X221114755
[6]

Dietz VH, Wollenweber E, Favre-Bonvin J, Gómez PLD. 1980. A novel class of complex flavonoids from the frond exudate of Pityrogramma trifoliata. Zeitschrift für Naturforschung C 35(1-2):36−40

doi: 10.1515/znc-1980-1-208
[7]

Tryon R. 1962. Taxonomic fern notes II. Pityrogramma (including Trismeria) and Anogramma. Contributions of the Gray. Herbarium 189:52−76. https://www.jstor.org/stable/41764661

[8]

Giudice GE, Morbelli MA, Piñeiro MR. 2004. Morphological and palynological analysis in Pityrograma link and Trismeria fée. (pteridaceae) From Argentina. Physis (Buenos Aires) 59(163−137):45−52. www.researchgate.net/profile/Marta-Morbelli/publication/306345889_Morphologycal_and_Palynological_analysis_in_Pityrogramma_Link_and_Trismeria_Fee_Pteridaceae_from_Argentina/links/57b8efa308aec9984ff3c96c/Morphologycal-and-Palynological-analysis-in-Pityrogramma-Link-and-Trismeria-Fee-Pteridaceae-from-Argentina.pdf

[9]

RCE. https://clasificacionespecies.mma.gob.cl/wpcontent/uploads/2019/10/Trismeria_trifoliata.pdf

[10]

Cohen G, Mascarini L, Xifreda C. 2012. Anatomía y micromorfología de hojas y tallos de dos cultivares de Rosa hybrida L. para flor de corte. Phyton (Buenos Aires) 81 (2):199−204. www.scielo.org.ar/pdf/phyton/v81n2/v81n2a10.pdf

[11]

Dizeo de Strittmatter CG. 1973. Nueva técnica de diafanización. Boletín de la Sociedad Argentina de Botánica 15:126−29. www.bfa.fcnym.unlp.edu.ar/catalogo/doc_num.php?explnum_id=2161

[12]

Johansen DA. 1940. Plant Microtechnique. Ed. MacGraw-Hill and Co., New York. 523 pp.

[13]

Graçano D, Azevedo AA, Prado J. 2001. Anatomia foliar das espécies de Pteridaceae do Parque Estadual do Rio Doce (PERD) - MG. Revista Brasileira De Botânica 24(3):333−47

doi: 10.1590/S0100-84042001000300012
[14]

Bower, F. 2010. Frontmatter. In The Ferns (Filicales): Treated Comparatively with a View to their Natural Classification (Cambridge Library Collection - Botany and Horticulture). Cambridge: Cambridge University Press. pp. I−IV

[15]

Sandoval-Zapotitla E, Terrazas T. 2001. Leaf anatomy of 16 taxa of the Trichocentrum clade (Orchidaceae: Oncidiinae). Lindleyana 16:81−93

[16]

Evert RF. 2006. Esau's Plant Anatomy. Meristems, Cells, and Tissues of the Plant Body: their Structure, Function, and Development. Nueva Jersey: John Wiley & Sons. https://doi.org/10.1002/0470047380

[17]

De la Rosa-Manzano E, Andrade JL, Zotz G, Reyes-García C. 2014. Respuestas fisiológicas a la sequía, de cinco especies de orquídeas epífitas, en dos selvas secas de la península de Yucatán. Botanical Sciences 92(4):607−16. www.scielo.org.mx/pdf/bs/v92n4/v92n4a12.pdf

[18]

Arévalo R, Figueroa J, Madriñán S. 2011. Anatomía foliar de ocho especies de Orquídeas epífitas. Lankasteriana 11(1):39−54

doi: 10.15517/lank.v11i1.18314
[19]

Herman S, Acevedo E, Silva P. 2001. Anatomía del tejido fotosintético de diez taxa de Opuntia establecidos en el secano árido mediterráneo de Chile. Revista Chilena de Historia Natural, 74:341−51

doi: 10.4067/s0716-078x2001000200011
[20]

Zuquim G, Costa FR, Prado J, Tuomisto H. 2008. Guia de samambaias e licófitas da Rebio Uatumã. Áttema, Manaus: Amazônia Central. 315 pp. http://ppbio.inpa.gov.br/sites/default/files/GuiaSamambaiasUatumaFINAL.pdf

[21]

Costa Silvestre L, Romero da Silva Xavier S. 2013. Ferns in fragment of Atlantic forest, Sapé, Paraíba, Brazil. Boletim do Museu Paraense Emílio Goeldi 8(3):431−447

doi: 10.13140/2.1.2476.6084
[22]

Atala C, Saldaña A, Navarrete E. 2012. Stomatal frequency and gas exchange differs in two Blechnum species (Pteridophyta, Blechnaceae) with contrasting ecological breadth. Gayana Botánica 69(1):161−66

doi: 10.4067/S0717-66432012000100016
[23]

Saldaña A, Gianoli E, Lusk CH. 2005. Ecophysiological responses to light availability in three Blechnum species (Pteridophyta, Blechnaceae) of different ecological breadth. Oecologia 145:252−57

doi: 10.1007/s00442-005-0116-2
[24]

González M, Cohen G, Mascarini L, Lorenzo G, Xifreda C. 2012. Evaluación de estomas y área foliar en frondes de helecho cuero (Rumohra adiantiformis (G. Forst.) Ching) para corte cultivadas bajo dos niveles de sombra. Horticultura Argentina 31:76

[25]

Gabriel y Galan JM, Prada C, Rolleri CH, Lahoz-Beltrá R, Martinez-Calvo C. 2011. Biometry of stomata in Blechnum species (Blechnaceae) with some taxonomic and ecological implications for the ferns. Revista de Biología Tropical 59(1):403−15. www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442011000100035&lng=en.

[26]

Brownlee C. 2001. El largo y el corto de las señales de la densidad de estomas. Trends in Plant Science 6:441−442

doi: 10.1016/S1360-1385(01)02095-7
[27]

Givnish TJ. 1988. Adaptation to sun vs. shade: a whole-plant perspective. Australian Journal of Plant Physiology 15:63−92

doi: 10.1071/PP9880063
[28]

Woodhouse RM, Nobel PS. 1982. Stipe anatomy, water potentials and xylem conductances in seven species of ferns (Filicopsida). American Journal of Botany 69:135−42

doi: 10.1002/j.1537-2197.1982.tb13242.x
[29]

Robinson JM. 1994. Speculations on carbon dioxide starvation, late tertiary evolution of stomatal regulation and floristic modernization. Plant, Cell and Environment 17:345−54

doi: 10.1111/j.1365-3040.1994.tb00303.x
[30]

Brodribb TJ, Holbrook NM. 2004. Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytologist 162:663−70

doi: 10.1111/j.1469-8137.2004.01060.x
[31]

Heiser T, Giers A, Bennert H. 1996. In situ gas exchange measurements and the adaptation to light regime of three species of Lycopodium. In Pteridology in perspective, eds. Camus JM, Gibby M, Johns RJ. UK: Kew, Royal Botanical Gardens. pp. 599−610.

[32]

De Boer H, Price CH, Wagner-Cremer F, Dekker S, Franks P, Veneklaas E. 2016. Optimal allocation of leaf epidermal area for gas exchange. New Phytologist 210:1219−28

doi: 10.1111/nph.13929
[33]

Schlüter U, Muschak M, Berger D, Altmann T. 2003. Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes. Journal of Experimental Botany 54:867−74

doi: 10.1093/jxb/erg087
[34]

Royer DL. 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Review of Palaeobotany and Palynology 114:1−28

doi: 10.1016/S0034-6667(00)00074-9
[35]

Poole I, Weyers JDB, Lawson T, Raven JA. 1996. Variations in stomatal density and index: implications for palaeoclimatic reconstructions. Plant, Cell and Environment 19:705−12

doi: 10.1111/j.1365-3040.1996.tb00405.x