[1]

Marcos-Filho J. 2015. Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola 72:363−74

doi: 10.1590/0103-9016-2015-0007
[2]

Oge L, Bourdais G, Bove J, Collet B, Godin B, et al. 2008. Protein repair L-isoaspartyl methyltransferase1 is involved in both seed longevity and germination vigor in Arabidopsis. The Plant Cell 20:3022−37

doi: 10.1105/tpc.108.058479
[3]

Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, et al. 2008. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiology 148:620−41

doi: 10.1104/pp.108.123141
[4]

Groot SPC, Surki AA, de Vos RCH, Kodde J. 2012. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions. Annals of Botany 110:1149−59

doi: 10.1093/aob/mcs198
[5]

Walters C, Wheeler LM, Grotenhuis JM. 2005. Longevity of seeds stored in a genebank: species characteristics. Seed Science Research 15:1−20

doi: 10.1079/SSR2004195
[6]

Spanò C, Buselli R, Ruffini Castiglione M, Bottega S, Grilli I. 2007. RNases and nucleases in embryos and endosperms from naturally aged wheat seeds stored in different conditions. Journal of Plant Physiology 164:487−95

doi: 10.1016/j.jplph.2006.03.015
[7]

Lehner A, Bailly C, Flechel B, Poels P, Côme D, et al. 2006. Changes in wheat seed germination ability, soluble carbohydrate and antioxidant enzyme activities in the embryo during the desiccation phase of maturation. Journal of Cereal Science 43:175−82

doi: 10.1016/j.jcs.2005.07.005
[8]

Ballesteros D, Walters C. 2019. Solid-state biology and seed longevity: a mechanical analysis of glasses in pea and soybean embryonic axes. Frontiers in Plant Science 10:920

doi: 10.3389/fpls.2019.00920
[9]

Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, et al. 2012. Seed germination and vigor. Annual Review of Plant Biology 63:507−33

doi: 10.1146/annurev-arplant-042811-105550
[10]

Landjeva S, Lohwasser U, Börner A. 2010. Genetic mapping within the wheat D genome reveals QTL for germination, seed vigour and longevity, and early seedling growth. Euphytica 171:129−43

doi: 10.1007/s10681-009-0016-3
[11]

Patil KG, Karjule A, Patel D, Sasidharan N. 2019. Effect of accelerated ageing on viability and longevity of wheat (Triticum aestivum) seed. The Indian Journal of Agricultural Sciences 89:920−28

doi: 10.56093/ijas.v89i6.90760
[12]

Willi J, Küpfer P, Evéquoz D, Fernandez G, Katz A, et al. 2018. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center. Nucleic Acids Research 46:1945−57

doi: 10.1093/nar/gkx1308
[13]

Saighani K, Kondo D, Sano N, Murata K, Yamada T, et al. 2021. Correlation between seed longevity and RNA integrity in the embryos of rice seeds. Plant Biotechnology 38:277−83

doi: 10.5511/plantbiotechnology.21.0422a
[14]

Rushton PJ, Bray CM. 1987. Stored and de novo synthesised polyadenylated RNA and loss of vigour and viability in wheat seed. Plant Science 51:51−59

doi: 10.1016/0168-9452(87)90220-2
[15]

Fleming MB, Hill LM, Walters C. 2019. The kinetics of ageing in dry-stored seeds: a comparison of viability loss and RNA degradation in unique legacy seed collections. Annals of Botany 123:1133−46

doi: 10.1093/aob/mcy217
[16]

Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, et al. 2004. The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiology 134:1598−613

doi: 10.1104/pp.103.036293
[17]

Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E. 2005. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. The Plant Journal 41:697−709

doi: 10.1111/j.1365-313X.2005.02337.x
[18]

Kimura M, Nambara E. 2010. Stored and neosynthesized mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition. Plant Molecular Biology 73:119−29

doi: 10.1007/s11103-010-9603-x
[19]

Fleming MB, Richards CM, Walters C. 2017. Decline in RNA integrity of dry-stored soybean seeds correlates with loss of germination potential. Journal of Experimental Botany 68:2219−30

doi: 10.1093/jxb/erx100
[20]

Zhao L, Wang H, Fu YB. 2020. Analysis of stored mRNA degradation in acceleratedly aged seeds of wheat and canola in comparison to Arabidopsis. Plants 9:1707

doi: 10.3390/plants9121707
[21]

Sano N, Ono H, Murata K, Yamada T, Hirasawa T, et al. 2015. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice. Journal of Experimental Botany 66:4035−46

doi: 10.1093/jxb/erv209
[22]

Sano N, Takebayashi Y, To A, Mhiri C, Rajjou L, et al. 2019. Shotgun proteomic analysis highlights the roles of long-lived mRNAs and de novo transcribed mRNAs in rice seeds upon imbibition. Plant and Cell Physiology 60:2584−96

doi: 10.1093/pcp/pcz152
[23]

Bai B, van der Horst S, Cordewener JHG, America TAHP, Hanson J, et al. 2020. Seed-Stored mRNAs that Are Specifically Associated to Monosomes Are Translationally Regulated during Germination. Plant Physiology 182:378−92

doi: 10.1104/pp.19.00644
[24]

Agacka-Mołdoch M, Arif MAR, Lohwasser U, Doroszewska T, Qualset CO, et al. 2016. The inheritance of wheat grain longevity: a comparison between induced and natural ageing. Journal of Applied Genetics 57:477−81

doi: 10.1007/s13353-016-0348-3
[25]

Gianella M, Balestrazzi A, Ravasio A, Mondoni A, Börner A, et al. 2022. Comparative seed longevity under genebank storage and artificial ageing: a case study in heteromorphic wheat wild relatives. Plant Biology 24(5):836−45

doi: 10.1111/plb.13421
[26]

Petruzzelli L, Carella G. 1983. The effect of ageing conditions on loss of viability in wheat (T. durum). Journal of Experimental Botany 34:221−25

doi: 10.1093/jxb/34.2.221
[27]

Wang W, Xu D, Sui Y, Ding X, Song X. 2022. A multiomic study uncovers a bZIP23-PER1A-mediated detoxification pathway to enhance seed vigor in rice. PNAS 119(9):e2026355119

doi: 10.1073/pnas.2026355119
[28]

Zhao L, Wang S, Fu YB, Wang H. 2019. Arabidopsis seed stored mRNAs are degraded constantly over aging time, as revealed by new quantification methods. Frontiers in Plant Science 10:1764

doi: 10.3389/fpls.2019.01764
[29]

Hassan MJ, Geng W, Zeng W, Raza MA, Khan I, et al. 2021. Diethyl aminoethyl hexanoate priming ameliorates seed germination via involvement in hormonal changes, osmotic adjustment, and dehydrins accumulation in white clover under drought stress. Frontiers in plant science 12:709187

doi: 10.3389/fpls.2021.709187
[30]

Jerkovic A, Kriegel AM., Bradner JR, Atwell BJ, Roberts TH, et a. 2010. Strategic distribution of protective proteins within bran layers of wheat protects the nutrient-rich endosperm. Plant Physiology 152(3):1459−70

doi: 10.1104/pp.109.149864
[31]

Jones RL, Jacobsen JV. 1991. Regulation of synthesis and transport of secreted proteins in cereal aleurone. International Review of Cytology 126:49−88

doi: 10.1016/s0074-7696(08)60682-8
[32]

Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H. 2013. Seeds: Physiology of Development, Germination and Dormancy. 3rd Edition. New York: Springer. pp. 203. https://doi.org/10.1007/978-1-4614-4693-4

[33]

Fath A, Bethke PC, Jones RL. 2001. Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiology 126:156−66

doi: 10.1104/pp.126.1.156
[34]

Johnson RR, Dyer WE. 2000. Degradation of endosperm mRNAs during dry afterripening of cereal grains. Seed Science Research 10:233−41

doi: 10.1017/S096025850000026X
[35]

Puchta M, Boczkowska M, Groszyk J. 2020. Low RIN value for RNA-Seq library construction from long-term stored seeds: A case study of barley seeds. Genes 11(10):1190

doi: 10.3390/genes11101190
[36]

Fleming MB, Patterson EL, Reeves PA, Richards CM, Gaines TA, et al. 2018. Exploring the fate of mRNA in aging seeds: protection, destruction, or slow decay? Journal of Experimental Botany 69:4309−21

doi: 10.1093/jxb/ery215
[37]

Righetti K, Vu JL, Pelletier S, Vu BL, Glaab E, et al. 2015. Inference of longevity-related genes from a robust coexpression network of seed maturation identifies regulators linking seed storability to biotic defense-related pathways. The Plant Cell 27:2692−708

doi: 10.1105/tpc.15.00632
[38]

International Seed Testing Association. 1976. International rules for seed testing. Seed Science and Technology 4:3−49

[39]

de Souza RR, Moraes MP, Paraginski JA, Moreira TF, Bittencourt KC, et al. 2022. Effects of Trichoderma asperellum on germination indexes and seedling parameters of lettuce cultivars. Current Microbiology 79:5

doi: 10.1007/s00284-021-02713-4
[40]

Wang B, Wang S, Tang Y, Jiang L, He W, et al. 2022. Transcriptome-wide characterization of seed aging in rice: Identification of specific long-lived mRNAs for seed longevity. Frontiers in plant science 13:857390

doi: 10.3389/fpls.2022.857390
[41]

Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD. 2001. Reverse transcriptase template switching: A SMART™ approach for full-length cDNA library construction. Biotechniques 30:892−97

doi: 10.2144/01304pf02
[42]

Zhao S, Ye Z, Stanton R. 2020. Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. RNA 26:903−9

doi: 10.1261/rna.074922.120
[43]

Sun H, Liu Y, Ma J, Wang Y, Song H, et al. 2021. Transcriptome analysis provides strategies for postharvest lotus seeds preservation. Postharvest Biology and Technology 179:111583

doi: 10.1016/j.postharvbio.2021.111583
[44]

Reiman M, Laan M, Rull K, Sõber S. 2017. Effects of RNA integrity on transcript quantification by total RNA sequencing of clinically collected human placental samples. The FASEB Journal 31:3298−308

doi: 10.1096/fj.201601031RR
[45]

Ma S, Wang M, Wu J, Guo W, Chen Y, et al. 2021. WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Molecular Plant 14:1965−68

doi: 10.1016/j.molp.2021.10.006
[46]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[47]

Okamoto K, Kitano H, Akazawa T. 1980. Biosynthesis and excretion of hydrolases in germinating cereal seeds. Plant and Cell Physiology 21:201−4

doi: 10.1093/oxfordjournals.pcp.a075983
[48]

Ahmed Z, Yang H, Fu YB. 2016. The Associative Changes in Scutellum Nuclear Content and Morphology with Viability Loss of Naturally Aged and Accelerated Aging Wheat (Triticum aestivum) Seeds. Frontiers in Plant Science 7:1474

doi: 10.3389/fpls.2016.01474
[49]

Floris C, Anguillesi MC. 1974. Ageing of isolated embryos and endosperms of durum wheat: an analysis of chromosome damage. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 22:133−38

doi: 10.1016/0027-5107(74)90093-1
[50]

Chauhan D, Deswal D, Dahiya O, Punia R. 2011. Change in storage enzymes activities in natural and accelerated aged seed of wheat (Triticum aestivum). Indian Journal of Agricultural Sciences 81:1037−40

[51]

Floris C. 1970. Ageing in Triticum durum seeds: behaviour of embryos and endosperms from aged seeds as revealed by the embryo-transplantation technique. Journal of Experimental Botany 21:462−68

doi: 10.1093/jxb/21.2.462
[52]

Livesley MA, Bray CM. 1993. Heat shock and recovery in aged wheat aleurone layers. Seed Science Research 3:179−86

doi: 10.1017/S0960258500001768
[53]

Deruyffelaere C, Bouchez I, Morin H, Guillot A, Miquel M, et al. 2015. Ubiquitin-Mediated Proteasomal Degradation of Oleosins is Involved in Oil Body Mobilization During Post-Germinative Seedling Growth in Arabidopsis. Plant and Cell Physiology 56:1374−87

doi: 10.1093/pcp/pcv056
[54]

Lee SE, Yoon IS, Hwang YS. 2022. Abscisic acid activation of oleosin gene HvOle3 expression prevents the coalescence of protein storage vacuoles in barley aleurone cells. Journal of Experimental Botany 73:817−34

doi: 10.1093/jxb/erab471
[55]

Ritchie S, Swanson SJ, Gilroy S. 2000. Physiology of the aleurone layer and starchy endosperm during grain development and early seedling growth: new insights from cell and molecular biology. Seed Science Research 10:193−212

doi: 10.1017/S0960258500000234
[56]

Nagel M, Börner A. 2010. The longevity of crop seeds stored under ambient conditions. Seed Science Research 20:1−12

doi: 10.1017/S0960258509990213
[57]

Boca S, Koestler F, Ksas B, Chevalier A, Leymarie J, et al. 2014. Arabidopsis lipocalins AtCHL and AtTIL have distinct but overlapping functions essential for lipid protection and seed longevity. Plant, Cell & Environment 37:368−81

doi: 10.1111/pce.12159
[58]

Wiebach J, Nagel M, Börner A, Altmann T, Riewe D. 2020. Age-dependent loss of seed viability is associated with increased lipid oxidation and hydrolysis. Plant, Cell & Environment 43:303−14

doi: 10.1111/pce.13651
[59]

González-Thuillier I, Salt L, Chope G, Penson S, Skeggs P, et al. 2015. Distribution of lipids in the grain of wheat (cv. Hereward) determined by lipidomic analysis of milling and pearling fractions. Journal of Agricultural and Food Chemistry 63:10705−16

doi: 10.1021/acs.jafc.5b05289
[60]

Dell'Aquila A, De Leo P, Caldiroli E, Zocchi G. 1978. Damages at translational level in aged wheat embryos. Plant Science Letters 12:217−26

doi: 10.1016/0304-4211(78)90071-8
[61]

Grilli I, Bacci E, Lombardi T, Spano C, Floris C. 1995. Natural ageing: Poly (A) polymerase in germinating embryos of Triticum durum wheat. Annals of Botany 76:15−21

doi: 10.1006/anbo.1995.1073
[62]

Rehman Arif MA, Börner A. 2020. An SNP based GWAS analysis of seed longevity in wheat. Cereal Research Communications 48:149−56

doi: 10.1007/s42976-020-00025-0
[63]

Mathieu O, Yukawa Y, Prieto JL, Vaillant I, Sugiura M, et al. 2003. Identification and characterization of transcription factor IIIA and ribosomal protein L5 from Arabidopsis thaliana. Nucleic Acids Research 31:2424−33

doi: 10.1093/nar/gkg335
[64]

Arif MAR, Nagel M, Lohwasser U, Börner A. 2017. Genetic architecture of seed longevity in bread wheat (Triticum aestivum L.). Journal of Biosciences 42:81−89

doi: 10.1007/s12038-016-9661-6
[65]

Tsugama D, Liu S, Takano T. 2012. A bZIP protein, VIP1, is a regulator of osmosensory signaling in Arabidopsis. Plant Physiology 159:144−55

doi: 10.1104/pp.112.197020
[66]

Campos F, Cuevas-Velazquez C, Fares MA, Reyes JL, Covarrubias AA. 2013. Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains. Molecular Genetics and Genomics 288:503−17

doi: 10.1007/s00438-013-0768-2
[67]

Chatelain E, Hundertmark M, Leprince O, Gall SL, Satour P, et al. 2012. Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity. Plant, Cell & Environment 35:1440−55

doi: 10.1111/j.1365-3040.2012.02501.x
[68]

Wu X, Liu H, Wang W, Chen S, Hu X, et al. 2011. Proteomic analysis of seed viability in maize. Acta Physiologiae Plantarum 33:181−91

doi: 10.1007/s11738-010-0536-4
[69]

Hundertmark M, Buitink J, Leprince O, Hincha DK. 2011. The reduction of seed-specific dehydrins reduces seed longevity in Arabidopsis thaliana. Seed Science Research 21:165−73

doi: 10.1017/S0960258511000079
[70]

Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, et al. 2004. UniProt: the universal protein knowledgebase. Nucleic Acids Research 32:D115−D119

doi: 10.1093/nar/gkh131
[71]

Guillaumot D, Guillon S, Déplanque T, Vanhee C, Gumy C, et al. 2009. The Arabidopsis TSPO-related protein is a stress and abscisic acid-regulated, endoplasmic reticulum-Golgi-localized membrane protein. The Plant Journal 60:242−56

doi: 10.1111/j.1365-313X.2009.03950.x
[72]

Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H. 2011. The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. The Plant Cell 23:785−805

doi: 10.1105/tpc.110.081570
[73]

Kaur H, Petla BP, Majee M. 2016. Small heat shock proteins: roles in development, desiccation tolerance and seed longevity. In Heat shock proteins and plants, eds. Asea A, Kaur P, Calderwood S. vol 10. Switzerland: Springer, Cham. pp. 3−18. https://doi.org/10.1007/978-3-319-46340-7_1

[74]

Chen H, Chu P, Zhou Y, Ding Y, Li Y, et al. 2016. Ectopic expression of NnPER1, a Nelumbo nucifera 1-cysteine peroxiredoxin antioxidant, enhances seed longevity and stress tolerance in Arabidopsis. The Plant Journal 88:608−19

doi: 10.1111/tpj.13286
[75]

Chen X, Börner A, Xin X, Nagel M, He J, et al. 2021. Comparative proteomics at the critical node of vigor loss in wheat seeds differing in storability. Frontiers in Plant Science 12:707184

doi: 10.3389/fpls.2021.707184
[76]

Mühlemann O, Lykke-Andersen J. 2010. How and where are nonsense mRNAs degraded in mammalian cells? RNA Biology 7:28−32

doi: 10.4161/rna.7.1.10578