[1]

Sahramaa M. 2004. Evaluating germplasm of reed canary grass, Phalaris arundinacea L. Dissertation. University of Helsinki, Yliopistopaino, Helsingin Yliopisto. 47 pp. https://helda.helsinki.fi/server/api/core/bitstreams/2d3799c0-958b-4803-8333-b08fa131d766/content

[2]

Kieloch R, Gołębiowska H, Sienkiewicz-Cholewa U. 2015. Impact of habitat conditions on the biological traits of the reed canary grass (Phalaris arundinacea L.). Acta Agrobotanica 68:205−10

doi: 10.5586/aa.2015.025
[3]

Lee JS, Ahn JH, Jo IH, Kim DA. 1996. Effects of cutting frequency and nitrogen fertilization on dry matter yield of reed canary grass (Phalaris arundinacea L.) in uncultivated rice paddy. Asian Australasian Journal of Animal Sciences 9:737−41

doi: 10.5713/ajas.1996.737
[4]

Anderson IC, Buxton DR, Lawlor PA. 1991. Yield and chemical composition of perennial grasses and alfalfa grown for maximum biomass. Sygeplejersken 78:121−31

[5]

Antonkiewicz J, Koodziej B, Bielińska EJ. 2015. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Environmental Science and Pollution Research 23:9505−17

doi: 10.1007/s11356-016-6175-6
[6]

Antonkiewicz J, Kołodziej B, Bielińska EJ, Popławska A. 2019. The possibility of using sewage sludge for energy crop cultivation exemplified by reed canary grass and giant miscanthus. Soil Science Annual 70:21−33

doi: 10.2478/ssa-2019-0003
[7]

Lavergne S, Molofsky J. 2004. Reed canary grass (Phalaris arundinacea L.) as a biological model in the study of plant invasions. Critical Reviews in Plant Sciences 23:415−29

doi: 10.1080/07352680490505934
[8]

Usťak S, Šinko J, Muňoz J. 2019. Reed canary grass (Phalaris arundinacea L.) as a promising energy crop. Journal of Central European Agriculture 20:1143−68

doi: 10.5513/JCEA01/20.4.2267
[9]

Wu W, Liu W, Sun M, Zhou J, Liu W, et al. 2019. Genetic diversity and structure of Elymus tangutorum accessions from western China as unraveled by AFLP markers. Hereditas 156:8

doi: 10.1186/s41065-019-0082-z
[10]

Ma X, Chen S, Bai S, Zhang X, Zhou Y. 2009. Genetic diversity of Elymus sibiricus populations from the northwestern plateau of Sichuan by RAPD markers. Journal of Agricultural Biotechnology 17:488−95

[11]

Yan J, Bai S, Zhang X, You M, Zhang C, et al. 2010. Genetic diversity of wild Elymus sibiricus germplasm from the Qinghai-Tibetan Plateau in China detected by SRAP markers. Acta Prataculturae Sinica 19:173−83

[12]

Chen S, Zhang X, Ma X, Huang L. 2013. Assessment of genetic diversity and differentiation of Elymus Nutans indigenous to Qinghai–Tibet Plateau using simple sequence repeats markers. Canadian Journal of Plant Science 93:1089−96

doi: 10.4141/cjps2013-062
[13]

Hulse-Kemp AM, Ashrafi H, Zheng X, Wang F, Hoegenauer KA, et al. 2014. Development and bin mapping of gene-associated interspecific SNPs for cotton (Gossypium hirsutum L.) introgression breeding efforts. BMC Genomics 15:945

doi: 10.1186/1471-2164-15-1
[14]

Liu L, Zhang Y, Yang Z, Yang Q, Zhang Y, et al. 2022. Fine mapping and candidate gene analysis of qHD1b, a QTL that promotes flowering in common wild rice (Oryza rufipogon) by up-regulating Ehd1. The Crop Journal 10:1083−93

doi: 10.1016/j.cj.2021.12.009
[15]

Collard BCY, MacKill DJ. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 363:557−72

doi: 10.1098/rstb.2007.2170
[16]

Khan SM, Page SE, Ahmad H, Harper DM. 2013. Sustainable utilization and conservation of plant biodiversity in montane ecosystems: the western Himalayas as a case study. Annals of Botany 112:479−501

doi: 10.1093/aob/mct125
[17]

Karcι H, Paizila A, Topçu H, Ilikçioğlu E, Kafkas S. 2020. Transcriptome sequencing and development of novel genic SSR markers from Pistacia vera L. Frontiers in Genetics 11:1021

doi: 10.3389/fgene.2020.01021
[18]

Sato M, Hasegawa Y, Mishima K, Takata K. 2015. Isolation and characterization of 22 EST-SSR markers for the genus Thujopsis (Cupressaceae). Applications in Plant Sciences 3:1400101

doi: 10.3732/apps.1400101
[19]

Li S, Wang Z, Su Y, Wang T. 2021. EST-SSR based landscape genetics of Pseudotaxus chienii, a tertiary relict conifer endemic to China. Ecology and Evolution 11:9498−515

doi: 10.1002/ece3.7769
[20]

Li CY, Chiang TY, Chiang YC, Hsu HM, Ge X, et al. 2016. Cross-species, amplifiable EST-SSR markers for Amentotaxus species obtained by next-generation sequencing. Molecules 21:67

doi: 10.3390/molecules21010067
[21]

Rao VR, Hodgkin T. 2002. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell, Tissue and Organ Culture 68:1−19

doi: 10.1023/A:1013359015812
[22]

Zhou Q, Luo D, Ma L, Xie W, Wang Y, et al. 2016. Development and cross-species transferability of EST-SSR markers in Siberian wildrye (Elymus sibiricus L.) using Illumina sequencing. Scientific Reports 6:20549

doi: 10.1038/srep20549
[23]

Chung JW, Kim TS, Suresh S, Lee SY, Cho GT. 2013. Development of 65 novel polymorphic cDNA-SSR markers in common vetch (Vicia sativa subsp. Sativa) using next generation sequencing. Molecules 18:8376−92

doi: 10.3390/molecules18078376
[24]

Merritt BJ, Culley TM, Avanesyan A, Stokes R, Brzyski J. 2015. An empirical review: characteristics of plant microsatellite markers that confer higher levels of genetic variation. Applications in Plant Sciences 3:1500025

doi: 10.3732/apps.1500025
[25]

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bulletin 19:11−15

[26]

Dai F, Tang C, Wang Z, Luo G, He L, et al. 2015. De novo assembly, gene annotation, and marker development of mulberry (Morus atropurpurea) transcriptome. Tree Genetics & Genomes 11:26

doi: 10.1007/s11295-015-0851-4
[27]

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, et al. 2005. Blast2GO: a universal tool for annotation, visualization, and analysis in functional genomics research. Bioinformatics 21:3674−76

doi: 10.1093/bioinformatics/bti610
[28]

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, et al. 1999. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 27:29−34

doi: 10.1093/nar/27.1.29
[29]

Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017. MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583−85

doi: 10.1093/bioinformatics/btx198
[30]

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, et al. 2012. Primer3—new capabilities and interfaces. Nucleic Acids Research 40:e115

doi: 10.1093/nar/gks596
[31]

Gu X, Guo Z, Ma X, Bai S, Zhang X, et al. 2015. Population genetic variability and structure of Elymus breviaristatus (Poaceae: Triticeae) endemic to Qinghai–Tibetan Plateau inferred from SSR markers. Biochemical Systematics and Ecology 58:247−56

doi: 10.1016/j.bse.2014.12.009
[32]

Powell W, Morgante M, Andre C, Hanafey M, Vogel J, et al. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2:225−38

doi: 10.1007/BF00564200
[33]

Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537−39

doi: 10.1093/bioinformatics/bts460
[34]

Peakall R, Smouse PE. 2012. GenALEx 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes 6:288−95

doi: 10.1111/j.1471-8286.2005.01155.x
[35]

Pavlícek A, Hrdá S, Flegr J. 1999. Freetree-freeware program for construction of phylogenetic trees based on distance data and bootstrap jackknife analysis of the tree robustness. Application in the RAPD analysis of genus frenkelia. Folia Biologica 45:97−99

[36]

Hampl V, Pavlícek A, Flegr J. 2001. Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program freetree: application to trichomonad parasites. International Journal of Systematic & Evolutionary Microbiology 51:731−35

doi: 10.1099/00207713-51-3-731
[37]

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945−59

doi: 10.1093/genetics/155.2.945
[38]

Carlson IT, Oram RN, Surprenant J. 1996. Reed canary grass and other Phalaris species. In Cool‐Season Forage Grasses, eds Moser LE, Buxton DR, Casler MD. 34: xix, 841. Madison, Wisconsin, USA: American Society of Agronomy, Inc. Crop Science Society of America, Inc. Soil Science Society of America, Inc. pp 569−604. https://doi.org/10.2134/agronmonogr34.c18

[39]

Wu J, Cai C, Cheng F, Cui H, Zhou H. 2014. Characterization and development of EST-SSR markers in tree peony using transcriptome sequences. Molecular Breeding 34:1853−1866

doi: 10.1007/s11032-014-0144-x
[40]

Xiong Y, Xiong Y, Yu Q, Zhao J, Lei X, et al. 2020. Genetic variability and structure of an important wild steppe grass Psathyrostachys juncea (Triticeae: Poaceae) germplasm collection from north and central Asia. PeeJ 8:e9033

doi: 10.7717/peerj.9033
[41]

Pan L, Huang T, Yang Z, Tang L, Cheng Y, et al. 2018. EST-SSR marker characterization based on rna-sequencing of Lolium multiflorum and cross transferability to related species. Molecular Breeding 38:80−92

doi: 10.1007/s11032-018-0775-4
[42]

Tóth G, Gáspári Z, Jurka J. 2000. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research 10:967−81

doi: 10.1101/gr.10.7.967
[43]

Sun M, Dong Z, Yang J, Wu W, Ma X, et al. 2021. Transcriptomic resources for prairie grass (Bromus catharticus): expressed transcripts, tissue-specific genes, and identification and validation of EST-SSR markers. BMC Plant Biology 21:264

doi: 10.1186/s12870-021-03037-y
[44]

Falush D, Stephens M, Pritchard J K. 2007. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7:574−78

doi: 10.1111/j.1471-8286.2007.01758.x
[45]

Kashi Y, King DG. 2006. Simple sequence repeats as advantageous mutators in evolution. Trends in Genetics 22:253−59

doi: 10.1016/j.tig.2006.03.005
[46]

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14:2611−20

doi: 10.1111/j.1365-294X.2005.02553.x
[47]

Nybom H, Bartish IV. 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology Evolution and Systematics 3:93−114

doi: 10.1078/1433-8319-00006