[1]

Li N, Xu R, Li Y. 2019. Molecular networks of seed size control in plants. Annual Review of Plant Biology 70:435−63

doi: 10.1146/annurev-arplant-050718-095851
[2]

Ren D, Ding C, Qian Q. 2023. Molecular bases of rice grain size and quality for optimized productivity. Science Bulletin 68:314−50

doi: 10.1016/j.scib.2023.01.026
[3]

Li N, Xu R, Duan P, Li Y. 2018. Control of grain size in rice. Plant Reproduction 31:237−51

doi: 10.1007/s00497-018-0333-6
[4]

Li N, Li Y. 2016. Signaling pathways of seed size control in plants. Current Opinion In Plant Biology 33:23−32

doi: 10.1016/j.pbi.2016.05.008
[5]

Xu G, Zhang X. 2023. Mechanisms controlling seed size by early endosperm development. Seed Biology 2:1

doi: 10.48130/SeedBio-2023-0001
[6]

Rodriguez MCS, Petersen M, Mundy J. 2010. Mitogen-activated protein kinase signaling in plants. Annual Review of Plant Biology 61:621−49

doi: 10.1146/annurev-arplant-042809-112252
[7]

MAPK Group, Ichimura K, Shinozaki K, Tena G, Sheen J, et al . 2002. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science 7:301−8

doi: 10.1016/S1360-1385(02)02302-6
[8]

Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KFX, et al. 2004. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. The Plant Cell 16:1220−34

doi: 10.1105/tpc.020834
[9]

Shiu SH, Bleecker AB. 2001. Plant receptor-like kinase gene family: Diversity, function, and signaling. Science's STKE 2001:re22

doi: 10.1126/stke.2001.113.re22
[10]

Morris ER, Walker JC. 2003. Receptor-like protein kinases: the keys to response. Current Opinion in Plant Biology 6:339−42

doi: 10.1016/S1369-5266(03)00055-4
[11]

De Smet I, Voß U, Jürgens G, Beeckman T. 2009. Receptor-like kinases shape the plant. Nature Cell Biology 11:1166−73

doi: 10.1038/ncb1009-1166
[12]

Couto D, Zipfel C. 2016. Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology 16:537−52

doi: 10.1038/nri.2016.77
[13]

Tang D, Wang G, Zhou J. 2017. Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. The Plant Cell 29:618−37

doi: 10.1105/tpc.16.00891
[14]

Liang X, Zhou J. 2018. Receptor-like cytoplasmic kinases: Central players in plant receptor kinase-mediated signaling. Annual Review of Plant Biology 69:267−99

doi: 10.1146/annurev-arplant-042817-040540
[15]

Lin W, Ma X, Shan L, He P. 2013. Big roles of small kinases: the complex functions of receptor-like cytoplasmic kinases in plant immunity and development. Journal of Integrative Plant Biology 55:1188−97

doi: 10.1111/jipb.12071
[16]

Zhang M, Zhang S. 2022. Mitogen-activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology 64:301−41

doi: 10.1111/jipb.13215
[17]

Sun T, Zhang Y. 2022. MAP kinase cascades in plant development and immune signaling. EMBO Reports 23:e53817

doi: 10.15252/embr.202153817
[18]

Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, et al. 2006. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends in Plant Science 11:192−8

doi: 10.1016/j.tplants.2006.02.007
[19]

Rao KP, Richa T, Kumar K, Raghuram B, Sinha AK. 2010. In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Research 17:139−53

doi: 10.1093/dnares/dsq011
[20]

Xu R, Duan P, Yu H, Zhou Z, Zhang B, et al. 2018. Control of Grain Size and Weight by the OsMKKK10-OsMKK4-OsMAPK6 Signaling Pathway in Rice. Molecular Plant 11:860−73

doi: 10.1016/j.molp.2018.04.004
[21]

Guo T, Chen K, Dong NQ, Shi CL, Ye WW, et al. 2018. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. The Plant Cell 30:871−88

doi: 10.1105/tpc.17.00959
[22]

Duan P, Rao Y, Zeng D, Yang Y, Xu R, et al. 2014. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. The Plant Journal 77:547−57

doi: 10.1111/tpj.12405
[23]

Liu S, Hua L, Dong S, Chen H, Zhu X, et al. 2015. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. The Plant Journal 84:672−81

doi: 10.1111/tpj.13025
[24]

Guo T, Lu ZQ, Shan JX, Ye WW, Dong NQ, et al. 2020. ERECTA1 acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice. The Plant Cell 32:2763−79

doi: 10.1105/tpc.20.00351
[25]

Jin J, Hua L, Zhu Z, Tan L, Zhao X, et al. 2016. GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication. The Plant Cell 28:2453−63

doi: 10.1105/tpc.16.00379
[26]

Guo T, Lu ZQ, Xiong Y, Shan JX, Ye WW, et al. 2023. Optimization of rice panicle architecture by specifically suppressing ligand–receptor pairs. Nature Communication 14:1640

doi: 10.1038/s41467-023-37326-x
[27]

Meng X, Wang H, He Y, Liu Y, Walker JC, et al. 2012. A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. The Plant Cell 24:4948−60

doi: 10.1105/tpc.112.104695
[28]

Bergmann DC, Lukowitz W, Somerville CR. 2004. Stomatal development and pattern controlled by a MAPKK kinase. Science 304:1494−97

doi: 10.1126/science.1096014
[29]

Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S. 2007. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. The Plant Cell 19:63−73

doi: 10.1105/tpc.106.048298
[30]

Wu X, Cai X, Zhang B, Wu S, Wang R, et al. 2022. ERECTA regulates seed size independently of its intracellular domain via MAPK-DA1-UBP15 signaling. The Plant Cell 34:3773−89

doi: 10.1093/plcell/koac194
[31]

Dong H, Dumenil J, Lu FH, Na L, Vanhaeren H, et al. 2017. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Genes & Development 31:197−208

doi: 10.1101/gad.292235.116
[32]

Li Y, Zheng L, Corke F, Smith C, Bevan MW. 2008. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Gens & Development 22:1331−36

doi: 10.1101/gad.463608
[33]

Du L, Li N, Chen L, Xu Y, Li Y, et al. 2014. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 inArabidopsis. The Plant Cell 26:665−77

doi: 10.1105/tpc.114.122663
[34]

Meng X, Chen X, Mang H, Liu C, Yu X, et al. 2015. Differential function of Arabidopsis SERK family receptor-like kinases in stomatal patterning. Current Biology 25:2361−72

doi: 10.1016/j.cub.2015.07.068
[35]

Lee JS, Kuroha T, Hnilova M, Khatayevich D, Kanaoka MM, et al. 2012. Direct interaction of ligand–receptor pairs specifying stomatal patterning. Genes & Development 26:126−36

doi: 10.1101/gad.179895.111
[36]

Jordá L, Sopeña-Torres S, Escudero V, Nuñez-Corcuera B, Delgado-Cerezo M, et al. 2016. ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis. Frontiers in Plant Science 7:897

doi: 10.3389/fpls.2016.00897
[37]

Liu Z, Mei E, Tian X, He M, Tang J, et al. 2021. OsMKKK70 regulates grain size and leaf angle in rice through the OsMKK4-OsMAPK6-OsWRKY53 signaling pathway. Journal of Integrative Plant Biology 63:2043−57

doi: 10.1111/jipb.13174
[38]

Mei E, Tang J, He M, Liu Z, Tian X, et al. 2022. OsMKKK70 negatively regulates cold tolerance at booting stage in rice. International Journal of Molecular Sciences 23:14472

doi: 10.3390/ijms232214472
[39]

Mao X, Zhang J, Liu W, Yan S, Liu Q, et al. 2019. The MKKK62-MKK3-MAPK7/14 module negatively regulates seed dormancy in rice. Rice 12:2

doi: 10.1186/s12284-018-0260-z
[40]

Tian X, Li X, Zhou W, Ren Y, Wang Z, et al. 2017. Transcription Factor OsWRKY53 Positively Regulates Brassinosteroid Signaling and Plant Architecture. Plant Physiology 175:1337−49

doi: 10.1104/pp.17.00946
[41]

Tian X, He M, Mei E, Zhang B, Tang J, et al. 2021. WRKY53 integrates classic brassinosteroid signaling and the mitogen-activated protein kinase pathway to regulate rice architecture and seed size. The Plant Cell 33:2753−75

doi: 10.1093/plcell/koab137
[42]

Chujo T, Miyamoto K, Ogawa S, Masuda Y, Shimizu T, et al. 2014. Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice. PLos One 9:e98737

doi: 10.1371/journal.pone.0098737
[43]

Yoo SJ, Kim SH, Kim MJ, Ryu CM, Kim YC, et al. 2014. Involvement of the OsMKK4-OsMPK1 Cascade and its Downstream Transcription Factor OsWRKY53 in the Wounding Response in Rice. The Plant Pathology Journal 30:168−77

doi: 10.5423/PPJ.OA.10.2013.0106
[44]

Hu L, Ye M, Li R, Zhang T, Zhou G, et al. 2015. The rice transcription factor WRKY53 suppresses herbivore-induced defenses by acting as a negative feedback modulator of mitogen-activated protein kinase activity. Plant Physiology 169:2907−21

doi: 10.1104/pp.15.01090
[45]

Hu L, Ye M, Li R, Lou Y. 2016. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice. Plant Signaling & Behavior 11:e1169357

doi: 10.1080/15592324.2016.1169357
[46]

Pan Y, Chen L, Zhao Y, Guo H, Li J, et al. 2021. Natural variation in OsMKK3 contributes to grain size and chalkiness in rice. Frontiers in Plant Science 12:784037

doi: 10.3389/fpls.2021.784037
[47]

Zhou S, Chen M, Zhang Y, Gao Q, Noman A, et al. 2019. OsMKK3, a stress-responsive protein kinase, positively regulates rice resistance to Nilaparvata lugens via phytohormone dynamics. International Journal of Molecular Sciences 20:3023

doi: 10.3390/ijms20123023
[48]

Jalmi SK, Sinha AK. 2016. Functional involvement of a mitogen activated protein kinase module, OsMKK3-OsMPK7-OsWRK30 in mediating resistance against Xanthomonas oryzae in Rice. Scientific Reports 6:37974

doi: 10.1038/srep37974
[49]

Danquah A, de Zélicourt A, Boudsocq M, Neubauer J, dit Frey NF, et al. 2015. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. The Plant Journal 82:232−44

doi: 10.1111/tpj.12808
[50]

Matsuoka D, Yasufuku T, Furuya T, Nanmori T. 2015. An abscisic acid inducible Arabidopsis MAPKKK, MAPKKK18 regulates leaf senescence via its kinase activity. Plant Molecular Biology 87:565−75

doi: 10.1007/s11103-015-0295-0
[51]

Sözen C, Schenk ST, Boudsocq M, Chardin C, Almeida-Trapp M, et al. 2020. Wounding and Insect Feeding Trigger Two Independent MAPK Pathways with Distinct Regulation and Kinetics. The Plant Cell 32:1988−2003

doi: 10.1105/tpc.19.00917
[52]

Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, et al. 2007. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. The Plant Cell 19:805−18

doi: 10.1105/tpc.106.046581
[53]

Sethi V, Raghuram B, Sinha AK, Chattopadhyay S. 2014. A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. The Plant Cell 26:3343−57

doi: 10.1105/tpc.114.128702
[54]

Xu R, Yu H, Wang J, Duan P, Zhang B, et al. 2018. A mitogen-activated protein kinase phosphatase influences grain size and weight in rice. The Plant Journal 95:937−46

doi: 10.1111/tpj.13971
[55]

Tamnanloo F, Damen H, Jangra R, Lee JS. 2018. MAP KINASE PHOSPHATASE1 Controls Cell Fate Transition during Stomatal Development. Plant Physiology 178:247−57

doi: 10.1104/pp.18.00475
[56]

Bartels S, Anderson JC, González Besteiro MA, Carreri A, Hirt H, et al. 2009. MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. The Plant Cell 21:2884−97

doi: 10.1105/tpc.109.067678
[57]

Anderson JC, Bartels S, González Besteiro MA, Shahollari B, Ulm R, et al. 2011. Arabidopsis MAP Kinase Phosphatase 1 (AtMKP1) negatively regulates MPK6-mediated PAMP responses and resistance against bacteria. The Plant Journal 67:258−68

doi: 10.1111/j.1365-313X.2011.04588.x
[58]

Jiang L, Anderson JC, Gonzalez Besteiro MA, Peck SC. 2017. Phosphorylation of Arabidopsis MAP Kinase Phosphatase 1 (MKP1) Is Required for PAMP Responses and Resistance against Bacteria. Plant Physiology 175:1839−52

doi: 10.1104/pp.17.01152
[59]

Tong H, Liu L, Jin Y, Du L, Yin Y, et al. 2012. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. The Plant Cell 24:2562−77

doi: 10.1105/tpc.112.097394
[60]

Khan M, Rozhon W, Bigeard J, Pflieger D, Husar S, et al. 2013. Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana. Journal Of Biological Chemistry 288:7519−27

doi: 10.1074/jbc.M112.384453
[61]

Kim TW, Michniewicz M, Bergmann DC, Wang ZY. 2012. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419−22

doi: 10.1038/nature10794
[62]

Sun L, Li X, Fu Y, Zhu Z, Tan L, et al. 2013. GS6, a member of the GRAS gene family, negatively regulates grain size in rice. Journal of Integrative Plant Biology 55:938−49

doi: 10.1111/jipb.12062
[63]

Duan P, Ni S, Wang J, Zhang B, Xu R, et al. 2016. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants 2:15203

doi: 10.1038/nplants.2015.203
[64]

Li S, Gao F, Xie K, Zeng X, Cao Y, et al. 2016. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnology Journal 14:2134−46

doi: 10.1111/pbi.12569
[65]

Sun P, Zhang W, Wang Y, He Q, Shu F, et al. 2016. OsGRF4 controls grain shape, panicle length and seed shattering in rice. Journal of Integrative Plant Biology 58:836−47

doi: 10.1111/jipb.12473
[66]

Che R, Tong H, Shi B, Liu Y, Fang S, et al. 2016. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants 2:15195

doi: 10.1038/nplants.2015.195
[67]

Jones MA, Shen JJ, Fu Y, Li H, Yang Z, et al. 2002. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. The Plant Cell 14:763−76

doi: 10.1105/tpc.010359
[68]

Gu Y, Vernoud V, Fu Y, Yang Z. 2003. ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. Journal of Experimental Botany 54:93−101

doi: 10.1093/jxb/erg035
[69]

Poraty-Gavra L, Zimmermann P, Haigis S, Bednarek P, Hazak O, et al. 2013. The Arabidopsis Rho of plants GTPase AtROP6 functions in developmental and pathogen response pathways. Plant Physiology 161:1172−88

doi: 10.1104/pp.112.213165
[70]

Xu T, Wen M, Nagawa S, Fu Y, Chen JG, et al. 2010. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143:99−110

doi: 10.1016/j.cell.2010.09.003
[71]

Zhang Y, Xiong Y, Liu R, Xue HW, Yang Z. 2019. The Rho-family GTPase OsRac1 controls rice grain size and yield by regulating cell division. Proceedings of the National Academy of Sciences of the United States of America 116:16121−26

doi: 10.1073/pnas.1902321116
[72]

Kim SH, Oikawa T, Kyozuka J, Wong HL, Umemura K, et al. 2012. The bHLH Rac Immunity1 (RAI1) Is Activated by OsRac1 via OsMAPK3 and OsMAPK6 in Rice Immunity. Plant and Cell Physiology 53:740−54

doi: 10.1093/pcp/pcs033
[73]

Nagano M, Ishikawa T, Fujiwara M, Fukao Y, Kawano Y, et al. 2016. Plasma Membrane Microdomains Are Essential for Rac1-RbohB/H-Mediated Immunity in Rice. The Plant Cell 28:1966−83

doi: 10.1105/tpc.16.00201
[74]

Wang L, Wang D, Yang Z, Jiang S, Qu J, et al. 2021. Roles of FERONIA-like receptor genes in regulating grain size and quality in rice. Science China Life Sciences 64:294−310

doi: 10.1007/s11427-020-1780-x
[75]

Duan Q, Kita D, Li C, Cheung AY, Wu HM. 2010. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. PNAS 107:17821−26

doi: 10.1073/pnas.1005366107
[76]

Mao D, Yu F, Li J, Van de Poel B, Tan D, et al. 2015. FERONIA receptor kinase interacts with S-adenosylmethionine synthetase and suppresses S-adenosylmethionine production and ethylene biosynthesis in Arabidopsis. Plant Cell and Environment 38:2566−74

doi: 10.1111/pce.12570
[77]

Yu F, Li J, Huang Y, Liu L, Li D, et al. 2014. FERONIA receptor kinase controls seed size in Arabidopsis thaliana. Molecular Plant 7:920−22

doi: 10.1093/mp/ssu010
[78]

Guo H, Li L, Ye H, Yu X, Algreen A, et al. 2009. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. PNAS 106:7648−53

doi: 10.1073/pnas.0812346106
[79]

Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR. 2014. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408−11

doi: 10.1126/science.1244454
[80]

Xiao Y, Stegmann M, Han Z, DeFalco TA, Parys K, et al. 2019. Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature 572:270−74

doi: 10.1038/s41586-019-1409-7
[81]

Xie Y, Sun P, Li Z, Zhang F, You C, et al. 2022. FERONIA Receptor Kinase Integrates with Hormone Signaling to Regulate Plant Growth, Development, and Responses to Environmental Stimuli. International Journal of Molecular Sciences 23:3730

doi: 10.3390/ijms23073730
[82]

Song L, Xu G, Li T, Zhou H, Lin Q, et al. 2022. The RALF1-FERONIA complex interacts with and activates TOR signaling in response to low nutrients. Molecular Plant 15:1120−36

doi: 10.1016/j.molp.2022.05.004
[83]

Zhang Y, Wang P, Shao W, Zhu JK, Dong J. 2015. The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division. Developmental Cell 33:136−49

doi: 10.1016/j.devcel.2015.02.022
[84]

Bücherl CA, Jarsch IK, Schudoma C, Segonzac C, Mbengue M, et al. 2017. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. eLife 6:e25114

doi: 10.7554/eLife.25114
[85]

Sun T, Nitta Y, Zhang Q, Wu D, Tian H, et al. 2018. Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling. EMBO Reports 19:e45324

doi: 10.15252/embr.201745324