[1]
|
Li N, Xu R, Li Y. 2019. Molecular networks of seed size control in plants. Annual Review of Plant Biology 70:435−63 doi: 10.1146/annurev-arplant-050718-095851
CrossRef Google Scholar
|
[2]
|
Ren D, Ding C, Qian Q. 2023. Molecular bases of rice grain size and quality for optimized productivity. Science Bulletin 68:314−50 doi: 10.1016/j.scib.2023.01.026
CrossRef Google Scholar
|
[3]
|
Li N, Xu R, Duan P, Li Y. 2018. Control of grain size in rice. Plant Reproduction 31:237−51 doi: 10.1007/s00497-018-0333-6
CrossRef Google Scholar
|
[4]
|
Li N, Li Y. 2016. Signaling pathways of seed size control in plants. Current Opinion In Plant Biology 33:23−32 doi: 10.1016/j.pbi.2016.05.008
CrossRef Google Scholar
|
[5]
|
Xu G, Zhang X. 2023. Mechanisms controlling seed size by early endosperm development. Seed Biology 2:1 doi: 10.48130/SeedBio-2023-0001
CrossRef Google Scholar
|
[6]
|
Rodriguez MCS, Petersen M, Mundy J. 2010. Mitogen-activated protein kinase signaling in plants. Annual Review of Plant Biology 61:621−49 doi: 10.1146/annurev-arplant-042809-112252
CrossRef Google Scholar
|
[7]
|
MAPK Group, Ichimura K, Shinozaki K, Tena G, Sheen J, et al . 2002. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science 7:301−8 doi: 10.1016/S1360-1385(02)02302-6
CrossRef Google Scholar
|
[8]
|
Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KFX, et al. 2004. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. The Plant Cell 16:1220−34 doi: 10.1105/tpc.020834
CrossRef Google Scholar
|
[9]
|
Shiu SH, Bleecker AB. 2001. Plant receptor-like kinase gene family: Diversity, function, and signaling. Science's STKE 2001:re22 doi: 10.1126/stke.2001.113.re22
CrossRef Google Scholar
|
[10]
|
Morris ER, Walker JC. 2003. Receptor-like protein kinases: the keys to response. Current Opinion in Plant Biology 6:339−42 doi: 10.1016/S1369-5266(03)00055-4
CrossRef Google Scholar
|
[11]
|
De Smet I, Voß U, Jürgens G, Beeckman T. 2009. Receptor-like kinases shape the plant. Nature Cell Biology 11:1166−73 doi: 10.1038/ncb1009-1166
CrossRef Google Scholar
|
[12]
|
Couto D, Zipfel C. 2016. Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology 16:537−52 doi: 10.1038/nri.2016.77
CrossRef Google Scholar
|
[13]
|
Tang D, Wang G, Zhou J. 2017. Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. The Plant Cell 29:618−37 doi: 10.1105/tpc.16.00891
CrossRef Google Scholar
|
[14]
|
Liang X, Zhou J. 2018. Receptor-like cytoplasmic kinases: Central players in plant receptor kinase-mediated signaling. Annual Review of Plant Biology 69:267−99 doi: 10.1146/annurev-arplant-042817-040540
CrossRef Google Scholar
|
[15]
|
Lin W, Ma X, Shan L, He P. 2013. Big roles of small kinases: the complex functions of receptor-like cytoplasmic kinases in plant immunity and development. Journal of Integrative Plant Biology 55:1188−97 doi: 10.1111/jipb.12071
CrossRef Google Scholar
|
[16]
|
Zhang M, Zhang S. 2022. Mitogen-activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology 64:301−41 doi: 10.1111/jipb.13215
CrossRef Google Scholar
|
[17]
|
Sun T, Zhang Y. 2022. MAP kinase cascades in plant development and immune signaling. EMBO Reports 23:e53817 doi: 10.15252/embr.202153817
CrossRef Google Scholar
|
[18]
|
Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, et al. 2006. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends in Plant Science 11:192−8 doi: 10.1016/j.tplants.2006.02.007
CrossRef Google Scholar
|
[19]
|
Rao KP, Richa T, Kumar K, Raghuram B, Sinha AK. 2010. In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Research 17:139−53 doi: 10.1093/dnares/dsq011
CrossRef Google Scholar
|
[20]
|
Xu R, Duan P, Yu H, Zhou Z, Zhang B, et al. 2018. Control of Grain Size and Weight by the OsMKKK10-OsMKK4-OsMAPK6 Signaling Pathway in Rice. Molecular Plant 11:860−73 doi: 10.1016/j.molp.2018.04.004
CrossRef Google Scholar
|
[21]
|
Guo T, Chen K, Dong NQ, Shi CL, Ye WW, et al. 2018. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. The Plant Cell 30:871−88 doi: 10.1105/tpc.17.00959
CrossRef Google Scholar
|
[22]
|
Duan P, Rao Y, Zeng D, Yang Y, Xu R, et al. 2014. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. The Plant Journal 77:547−57 doi: 10.1111/tpj.12405
CrossRef Google Scholar
|
[23]
|
Liu S, Hua L, Dong S, Chen H, Zhu X, et al. 2015. OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. The Plant Journal 84:672−81 doi: 10.1111/tpj.13025
CrossRef Google Scholar
|
[24]
|
Guo T, Lu ZQ, Shan JX, Ye WW, Dong NQ, et al. 2020. ERECTA1 acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice. The Plant Cell 32:2763−79 doi: 10.1105/tpc.20.00351
CrossRef Google Scholar
|
[25]
|
Jin J, Hua L, Zhu Z, Tan L, Zhao X, et al. 2016. GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication. The Plant Cell 28:2453−63 doi: 10.1105/tpc.16.00379
CrossRef Google Scholar
|
[26]
|
Guo T, Lu ZQ, Xiong Y, Shan JX, Ye WW, et al. 2023. Optimization of rice panicle architecture by specifically suppressing ligand–receptor pairs. Nature Communication 14:1640 doi: 10.1038/s41467-023-37326-x
CrossRef Google Scholar
|
[27]
|
Meng X, Wang H, He Y, Liu Y, Walker JC, et al. 2012. A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. The Plant Cell 24:4948−60 doi: 10.1105/tpc.112.104695
CrossRef Google Scholar
|
[28]
|
Bergmann DC, Lukowitz W, Somerville CR. 2004. Stomatal development and pattern controlled by a MAPKK kinase. Science 304:1494−97 doi: 10.1126/science.1096014
CrossRef Google Scholar
|
[29]
|
Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S. 2007. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. The Plant Cell 19:63−73 doi: 10.1105/tpc.106.048298
CrossRef Google Scholar
|
[30]
|
Wu X, Cai X, Zhang B, Wu S, Wang R, et al. 2022. ERECTA regulates seed size independently of its intracellular domain via MAPK-DA1-UBP15 signaling. The Plant Cell 34:3773−89 doi: 10.1093/plcell/koac194
CrossRef Google Scholar
|
[31]
|
Dong H, Dumenil J, Lu FH, Na L, Vanhaeren H, et al. 2017. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Genes & Development 31:197−208 doi: 10.1101/gad.292235.116
CrossRef Google Scholar
|
[32]
|
Li Y, Zheng L, Corke F, Smith C, Bevan MW. 2008. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Gens & Development 22:1331−36 doi: 10.1101/gad.463608
CrossRef Google Scholar
|
[33]
|
Du L, Li N, Chen L, Xu Y, Li Y, et al. 2014. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 inArabidopsis. The Plant Cell 26:665−77 doi: 10.1105/tpc.114.122663
CrossRef Google Scholar
|
[34]
|
Meng X, Chen X, Mang H, Liu C, Yu X, et al. 2015. Differential function of Arabidopsis SERK family receptor-like kinases in stomatal patterning. Current Biology 25:2361−72 doi: 10.1016/j.cub.2015.07.068
CrossRef Google Scholar
|
[35]
|
Lee JS, Kuroha T, Hnilova M, Khatayevich D, Kanaoka MM, et al. 2012. Direct interaction of ligand–receptor pairs specifying stomatal patterning. Genes & Development 26:126−36 doi: 10.1101/gad.179895.111
CrossRef Google Scholar
|
[36]
|
Jordá L, Sopeña-Torres S, Escudero V, Nuñez-Corcuera B, Delgado-Cerezo M, et al. 2016. ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis. Frontiers in Plant Science 7:897 doi: 10.3389/fpls.2016.00897
CrossRef Google Scholar
|
[37]
|
Liu Z, Mei E, Tian X, He M, Tang J, et al. 2021. OsMKKK70 regulates grain size and leaf angle in rice through the OsMKK4-OsMAPK6-OsWRKY53 signaling pathway. Journal of Integrative Plant Biology 63:2043−57 doi: 10.1111/jipb.13174
CrossRef Google Scholar
|
[38]
|
Mei E, Tang J, He M, Liu Z, Tian X, et al. 2022. OsMKKK70 negatively regulates cold tolerance at booting stage in rice. International Journal of Molecular Sciences 23:14472 doi: 10.3390/ijms232214472
CrossRef Google Scholar
|
[39]
|
Mao X, Zhang J, Liu W, Yan S, Liu Q, et al. 2019. The MKKK62-MKK3-MAPK7/14 module negatively regulates seed dormancy in rice. Rice 12:2 doi: 10.1186/s12284-018-0260-z
CrossRef Google Scholar
|
[40]
|
Tian X, Li X, Zhou W, Ren Y, Wang Z, et al. 2017. Transcription Factor OsWRKY53 Positively Regulates Brassinosteroid Signaling and Plant Architecture. Plant Physiology 175:1337−49 doi: 10.1104/pp.17.00946
CrossRef Google Scholar
|
[41]
|
Tian X, He M, Mei E, Zhang B, Tang J, et al. 2021. WRKY53 integrates classic brassinosteroid signaling and the mitogen-activated protein kinase pathway to regulate rice architecture and seed size. The Plant Cell 33:2753−75 doi: 10.1093/plcell/koab137
CrossRef Google Scholar
|
[42]
|
Chujo T, Miyamoto K, Ogawa S, Masuda Y, Shimizu T, et al. 2014. Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice. PLos One 9:e98737 doi: 10.1371/journal.pone.0098737
CrossRef Google Scholar
|
[43]
|
Yoo SJ, Kim SH, Kim MJ, Ryu CM, Kim YC, et al. 2014. Involvement of the OsMKK4-OsMPK1 Cascade and its Downstream Transcription Factor OsWRKY53 in the Wounding Response in Rice. The Plant Pathology Journal 30:168−77 doi: 10.5423/PPJ.OA.10.2013.0106
CrossRef Google Scholar
|
[44]
|
Hu L, Ye M, Li R, Zhang T, Zhou G, et al. 2015. The rice transcription factor WRKY53 suppresses herbivore-induced defenses by acting as a negative feedback modulator of mitogen-activated protein kinase activity. Plant Physiology 169:2907−21 doi: 10.1104/pp.15.01090
CrossRef Google Scholar
|
[45]
|
Hu L, Ye M, Li R, Lou Y. 2016. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice. Plant Signaling & Behavior 11:e1169357 doi: 10.1080/15592324.2016.1169357
CrossRef Google Scholar
|
[46]
|
Pan Y, Chen L, Zhao Y, Guo H, Li J, et al. 2021. Natural variation in OsMKK3 contributes to grain size and chalkiness in rice. Frontiers in Plant Science 12:784037 doi: 10.3389/fpls.2021.784037
CrossRef Google Scholar
|
[47]
|
Zhou S, Chen M, Zhang Y, Gao Q, Noman A, et al. 2019. OsMKK3, a stress-responsive protein kinase, positively regulates rice resistance to Nilaparvata lugens via phytohormone dynamics. International Journal of Molecular Sciences 20:3023 doi: 10.3390/ijms20123023
CrossRef Google Scholar
|
[48]
|
Jalmi SK, Sinha AK. 2016. Functional involvement of a mitogen activated protein kinase module, OsMKK3-OsMPK7-OsWRK30 in mediating resistance against Xanthomonas oryzae in Rice. Scientific Reports 6:37974 doi: 10.1038/srep37974
CrossRef Google Scholar
|
[49]
|
Danquah A, de Zélicourt A, Boudsocq M, Neubauer J, dit Frey NF, et al. 2015. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. The Plant Journal 82:232−44 doi: 10.1111/tpj.12808
CrossRef Google Scholar
|
[50]
|
Matsuoka D, Yasufuku T, Furuya T, Nanmori T. 2015. An abscisic acid inducible Arabidopsis MAPKKK, MAPKKK18 regulates leaf senescence via its kinase activity. Plant Molecular Biology 87:565−75 doi: 10.1007/s11103-015-0295-0
CrossRef Google Scholar
|
[51]
|
Sözen C, Schenk ST, Boudsocq M, Chardin C, Almeida-Trapp M, et al. 2020. Wounding and Insect Feeding Trigger Two Independent MAPK Pathways with Distinct Regulation and Kinetics. The Plant Cell 32:1988−2003 doi: 10.1105/tpc.19.00917
CrossRef Google Scholar
|
[52]
|
Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, et al. 2007. The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. The Plant Cell 19:805−18 doi: 10.1105/tpc.106.046581
CrossRef Google Scholar
|
[53]
|
Sethi V, Raghuram B, Sinha AK, Chattopadhyay S. 2014. A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. The Plant Cell 26:3343−57 doi: 10.1105/tpc.114.128702
CrossRef Google Scholar
|
[54]
|
Xu R, Yu H, Wang J, Duan P, Zhang B, et al. 2018. A mitogen-activated protein kinase phosphatase influences grain size and weight in rice. The Plant Journal 95:937−46 doi: 10.1111/tpj.13971
CrossRef Google Scholar
|
[55]
|
Tamnanloo F, Damen H, Jangra R, Lee JS. 2018. MAP KINASE PHOSPHATASE1 Controls Cell Fate Transition during Stomatal Development. Plant Physiology 178:247−57 doi: 10.1104/pp.18.00475
CrossRef Google Scholar
|
[56]
|
Bartels S, Anderson JC, González Besteiro MA, Carreri A, Hirt H, et al. 2009. MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. The Plant Cell 21:2884−97 doi: 10.1105/tpc.109.067678
CrossRef Google Scholar
|
[57]
|
Anderson JC, Bartels S, González Besteiro MA, Shahollari B, Ulm R, et al. 2011. Arabidopsis MAP Kinase Phosphatase 1 (AtMKP1) negatively regulates MPK6-mediated PAMP responses and resistance against bacteria. The Plant Journal 67:258−68 doi: 10.1111/j.1365-313X.2011.04588.x
CrossRef Google Scholar
|
[58]
|
Jiang L, Anderson JC, Gonzalez Besteiro MA, Peck SC. 2017. Phosphorylation of Arabidopsis MAP Kinase Phosphatase 1 (MKP1) Is Required for PAMP Responses and Resistance against Bacteria. Plant Physiology 175:1839−52 doi: 10.1104/pp.17.01152
CrossRef Google Scholar
|
[59]
|
Tong H, Liu L, Jin Y, Du L, Yin Y, et al. 2012. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. The Plant Cell 24:2562−77 doi: 10.1105/tpc.112.097394
CrossRef Google Scholar
|
[60]
|
Khan M, Rozhon W, Bigeard J, Pflieger D, Husar S, et al. 2013. Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana. Journal Of Biological Chemistry 288:7519−27 doi: 10.1074/jbc.M112.384453
CrossRef Google Scholar
|
[61]
|
Kim TW, Michniewicz M, Bergmann DC, Wang ZY. 2012. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419−22 doi: 10.1038/nature10794
CrossRef Google Scholar
|
[62]
|
Sun L, Li X, Fu Y, Zhu Z, Tan L, et al. 2013. GS6, a member of the GRAS gene family, negatively regulates grain size in rice. Journal of Integrative Plant Biology 55:938−49 doi: 10.1111/jipb.12062
CrossRef Google Scholar
|
[63]
|
Duan P, Ni S, Wang J, Zhang B, Xu R, et al. 2016. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants 2:15203 doi: 10.1038/nplants.2015.203
CrossRef Google Scholar
|
[64]
|
Li S, Gao F, Xie K, Zeng X, Cao Y, et al. 2016. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnology Journal 14:2134−46 doi: 10.1111/pbi.12569
CrossRef Google Scholar
|
[65]
|
Sun P, Zhang W, Wang Y, He Q, Shu F, et al. 2016. OsGRF4 controls grain shape, panicle length and seed shattering in rice. Journal of Integrative Plant Biology 58:836−47 doi: 10.1111/jipb.12473
CrossRef Google Scholar
|
[66]
|
Che R, Tong H, Shi B, Liu Y, Fang S, et al. 2016. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants 2:15195 doi: 10.1038/nplants.2015.195
CrossRef Google Scholar
|
[67]
|
Jones MA, Shen JJ, Fu Y, Li H, Yang Z, et al. 2002. The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. The Plant Cell 14:763−76 doi: 10.1105/tpc.010359
CrossRef Google Scholar
|
[68]
|
Gu Y, Vernoud V, Fu Y, Yang Z. 2003. ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. Journal of Experimental Botany 54:93−101 doi: 10.1093/jxb/erg035
CrossRef Google Scholar
|
[69]
|
Poraty-Gavra L, Zimmermann P, Haigis S, Bednarek P, Hazak O, et al. 2013. The Arabidopsis Rho of plants GTPase AtROP6 functions in developmental and pathogen response pathways. Plant Physiology 161:1172−88 doi: 10.1104/pp.112.213165
CrossRef Google Scholar
|
[70]
|
Xu T, Wen M, Nagawa S, Fu Y, Chen JG, et al. 2010. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143:99−110 doi: 10.1016/j.cell.2010.09.003
CrossRef Google Scholar
|
[71]
|
Zhang Y, Xiong Y, Liu R, Xue HW, Yang Z. 2019. The Rho-family GTPase OsRac1 controls rice grain size and yield by regulating cell division. Proceedings of the National Academy of Sciences of the United States of America 116:16121−26 doi: 10.1073/pnas.1902321116
CrossRef Google Scholar
|
[72]
|
Kim SH, Oikawa T, Kyozuka J, Wong HL, Umemura K, et al. 2012. The bHLH Rac Immunity1 (RAI1) Is Activated by OsRac1 via OsMAPK3 and OsMAPK6 in Rice Immunity. Plant and Cell Physiology 53:740−54 doi: 10.1093/pcp/pcs033
CrossRef Google Scholar
|
[73]
|
Nagano M, Ishikawa T, Fujiwara M, Fukao Y, Kawano Y, et al. 2016. Plasma Membrane Microdomains Are Essential for Rac1-RbohB/H-Mediated Immunity in Rice. The Plant Cell 28:1966−83 doi: 10.1105/tpc.16.00201
CrossRef Google Scholar
|
[74]
|
Wang L, Wang D, Yang Z, Jiang S, Qu J, et al. 2021. Roles of FERONIA-like receptor genes in regulating grain size and quality in rice. Science China Life Sciences 64:294−310 doi: 10.1007/s11427-020-1780-x
CrossRef Google Scholar
|
[75]
|
Duan Q, Kita D, Li C, Cheung AY, Wu HM. 2010. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. PNAS 107:17821−26 doi: 10.1073/pnas.1005366107
CrossRef Google Scholar
|
[76]
|
Mao D, Yu F, Li J, Van de Poel B, Tan D, et al. 2015. FERONIA receptor kinase interacts with S-adenosylmethionine synthetase and suppresses S-adenosylmethionine production and ethylene biosynthesis in Arabidopsis. Plant Cell and Environment 38:2566−74 doi: 10.1111/pce.12570
CrossRef Google Scholar
|
[77]
|
Yu F, Li J, Huang Y, Liu L, Li D, et al. 2014. FERONIA receptor kinase controls seed size in Arabidopsis thaliana. Molecular Plant 7:920−22 doi: 10.1093/mp/ssu010
CrossRef Google Scholar
|
[78]
|
Guo H, Li L, Ye H, Yu X, Algreen A, et al. 2009. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. PNAS 106:7648−53 doi: 10.1073/pnas.0812346106
CrossRef Google Scholar
|
[79]
|
Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR. 2014. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408−11 doi: 10.1126/science.1244454
CrossRef Google Scholar
|
[80]
|
Xiao Y, Stegmann M, Han Z, DeFalco TA, Parys K, et al. 2019. Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature 572:270−74 doi: 10.1038/s41586-019-1409-7
CrossRef Google Scholar
|
[81]
|
Xie Y, Sun P, Li Z, Zhang F, You C, et al. 2022. FERONIA Receptor Kinase Integrates with Hormone Signaling to Regulate Plant Growth, Development, and Responses to Environmental Stimuli. International Journal of Molecular Sciences 23:3730 doi: 10.3390/ijms23073730
CrossRef Google Scholar
|
[82]
|
Song L, Xu G, Li T, Zhou H, Lin Q, et al. 2022. The RALF1-FERONIA complex interacts with and activates TOR signaling in response to low nutrients. Molecular Plant 15:1120−36 doi: 10.1016/j.molp.2022.05.004
CrossRef Google Scholar
|
[83]
|
Zhang Y, Wang P, Shao W, Zhu JK, Dong J. 2015. The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division. Developmental Cell 33:136−49 doi: 10.1016/j.devcel.2015.02.022
CrossRef Google Scholar
|
[84]
|
Bücherl CA, Jarsch IK, Schudoma C, Segonzac C, Mbengue M, et al. 2017. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. eLife 6:e25114 doi: 10.7554/eLife.25114
CrossRef Google Scholar
|
[85]
|
Sun T, Nitta Y, Zhang Q, Wu D, Tian H, et al. 2018. Antagonistic interactions between two MAP kinase cascades in plant development and immune signaling. EMBO Reports 19:e45324 doi: 10.15252/embr.201745324
CrossRef Google Scholar
|