[1]
|
Zhou H, Xia D, He Y. 2020. Rice grain quality—traditional traits for high quality rice and health-plus substances. Molecular Breeding 40:1 doi: 10.1007/s11032-019-1080-6
CrossRef Google Scholar
|
[2]
|
Tian Y, Zhou Y, Gao G, Zhang Q, Li Y, et al. 2023. Creation of Two-Line Fragrant Glutinous Hybrid Rice by Editing the Wx and OsBADH2 Genes via the CRISPR/Cas9 System. International Journal of Molecular Sciences 24:849 doi: 10.3390/ijms24010849
CrossRef Google Scholar
|
[3]
|
Zhang J, Zhang H, Botella J, Zhu J-K. 2018. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. Journal of Integrative Plant Biology 60:369−75 doi: 10.1111/jipb.12620
CrossRef Google Scholar
|
[4]
|
Xu Y, Lin Q, Li X, Wang F, Chen Z, et al. 2021. Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnology Journal 19:11−13 doi: 10.1111/pbi.13433
CrossRef Google Scholar
|
[5]
|
Huang L, Li Q, Zhang C, Chu R, Gu Z, et al. 2020. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnology Journal 18:2164−66 doi: 10.1111/pbi.13391
CrossRef Google Scholar
|
[6]
|
Zhang Q, Zhang S, Yu X, Wei X, Huang X, et al. 2022. Fine-tuning grain amylose contents by genome editing of Waxy cis-regulatory region in rice. Molecular Breeding 42 doi: 10.1007/s11032-022-01342-4
CrossRef Google Scholar
|
[7]
|
Liu X, Ding Q, Wang W, Pan Y, Tan C, et al. 2021. Targeted deletion of the first intron of the Wx b allele via CRISPR/Cas9 significantly increases grain amylose content in rice. Rice 15:1 doi: 10.1186/s12284-021-00548-y
CrossRef Google Scholar
|
[8]
|
Zhou H, Xia D, Zhao D, Li Y, Li P, et al. 2021. The origin of Wx la provides new insights into the improvement of grain quality in rice. Journal of Integrative Plant Biology 63:878−88 doi: 10.1111/jipb.13011
CrossRef Google Scholar
|
[9]
|
Zhang C, Yang Y, Chen S, Liu X, Zhu J, et al. 2020. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency. Journal of Integrative Plant Biology 63:889−901 doi: 10.1111/jipb.13010
CrossRef Google Scholar
|
[10]
|
Zeng D, Yan M, Wang Y, Liu X, Qian Q, et al. 2007. Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wx b pre-mRNAs in rice (Oryza sativa L.). Plant Molecular Biology 65:501−9 doi: 10.1007/s11103-007-9186-3
CrossRef Google Scholar
|
[11]
|
Isshiki M, Matsuda Y, Takasaki A, Wong HL, Satoh H, Shimamoto K. 2008. Du3, a mRNA cap-binding protein gene, regulates amylose content in Japonica rice seeds. Plant Biotechnology 25:483−87 doi: 10.5511/plantbiotechnology.25.483
CrossRef Google Scholar
|
[12]
|
Cai Y, Zhang W, Fu Y, Shan Z, Xu J, et al. 2022. Du13 encodes a C2H2 zinc-finger protein that regulates Wx b pre-mRNA splicing and microRNA biogenesis in rice endosperm. Plant Biotechnology Journal 20:1387−401 doi: 10.1111/pbi.13821
CrossRef Google Scholar
|
[13]
|
Wu YP, Pu CH, Lin HY, Huang HY, Huang YC, et al. 2014. Three novel alleles of FLOURY ENDOSPERM2 (FLO2) confer dull grains with low amylose content in rice. Plant Science 233:44−52 doi: 10.1016/j.plantsci.2014.12.011
CrossRef Google Scholar
|
[14]
|
Takemoto-Kuno Y, Mitsueda H, Suzuki K, Hirabayashi H, Ideta O, et al. 2015. qAC2, a novel QTL that interacts with Wx and controls the low amylose content in rice (Oryza sativa L.). Theoretical and Applied Genetics 128:563−73 doi: 10.1007/s00122-014-2432-6
CrossRef Google Scholar
|
[15]
|
Zhang H, Zhou L, Xu H, Wang L, Liu H, et al. 2019. The qSAC3 locus from indica rice effectively increases amylose content under a variety of conditions. BMC Plant Biology 19:275 doi: 10.1186/s12870-019-1860-5
CrossRef Google Scholar
|
[16]
|
Igarashi H, Ito H, Shimada T, Kang DJ, Hamada S. 2021. A novel rice dull gene, LowAC1, encodes an RNA recognition motif protein affecting Waxy b pre-mRNA splicing. Plant Physiology and Biochemistry 162:100−9 doi: 10.1016/j.plaphy.2021.02.035
CrossRef Google Scholar
|
[17]
|
Jin SK, Xu LN, Leng YJ, Zhang MQ, Yang QQ, et al. 2023. The OsNAC24-OsNAP protein complex activates OsGBSSI and OsSBEI expression to fine-tune starch biosynthesis in rice endosperm. Plant Biotechnology Journal 21:2224−40 doi: 10.1111/pbi.14124
CrossRef Google Scholar
|
[18]
|
Wang J, Chen Z, Zhang Q, Meng S, Wei C. 2020. The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis. Plant Physiology 184:1775−91 doi: 10.1104/pp.20.00984
CrossRef Google Scholar
|
[19]
|
Bello BK, Hou Y, Zhao J, Jiao G, Wu Y, et al. 2019. NF-YB1-YC12-bHLH144 complex directly activates Wx to regulate grain quality in rice (Oryza sativa L.). Plant Biotechnology Journal 17:1222−35 doi: 10.1111/pbi.13048
CrossRef Google Scholar
|
[20]
|
Zhang H, Xu H, Feng M, Zhu Y. 2018. Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Plant Biotechnology Journal 16:18−26 doi: 10.1111/pbi.12745
CrossRef Google Scholar
|
[21]
|
Feng T, Wang L, Li L, Liu Y, Chong K, et al. 2022. OsMADS14 and NF-YB1 cooperate in the direct activation of OsAGPL2 and Waxy during starch synthesis in rice endosperm. New Phytologist 234:77−92 doi: 10.1111/nph.17990
CrossRef Google Scholar
|
[22]
|
Zhu Y, Cai XL, Wang ZY, Hong MM. 2003. An Interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene. The Journal of Biological Chemistry 278:47803−11 doi: 10.1074/jbc.M302806200
CrossRef Google Scholar
|
[23]
|
Yang D, Wu LY, Hwang Y-S, Chen LF, Huang N. 2001. Expression of the REB transcriptional activator in rice grains improves the yield of recombinant proteins whose genes are controlled by a Reb-responsive promoter. Proceedings of the National Academy of Sciences of the United States of America 98:11438−43 doi: 10.1073/pnas.201411298
CrossRef Google Scholar
|
[24]
|
Cao R, Zhao S, Jiao G, Duan Y, Ma L, et al. 2022. OPAQUE3, encoding a transmembrane bZIP transcription factor, regulates endosperm storage protein and starch biosynthesis in rice. Plant Communications 3:100463 doi: 10.1016/j.xplc.2022.100463
CrossRef Google Scholar
|
[25]
|
Peng B, Kong H, Li Y, Wang L, Zhong M, et al. 2014. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nature communications 5:4847 doi: 10.1038/ncomms5847
CrossRef Google Scholar
|
[26]
|
Li Y, Fan C, Xing Y, Yun P, Luo L, et al. 2014. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nature Genetics 46:398−404 doi: 10.1038/ng.2923
CrossRef Google Scholar
|
[27]
|
Wu B, Yun P, Zhou H, Xia D, Gu Y, et al. 2022. Natural variation in WHITE-CORE RATE 1 regulates redox homeostasis in rice endosperm to affect grain quality. The Plant Cell 34:1912−32 doi: 10.1093/plcell/koac057
CrossRef Google Scholar
|
[28]
|
Lou G, Chen P, Zhou H, Li P, Xiong J, et al. 2021. FLOURY ENDOSPERM19 encoding a class I glutamine amidotransferase affects grain quality in rice. Molecular Breeding 41:36 doi: 10.1007/s11032-021-01226-z
CrossRef Google Scholar
|
[29]
|
Wang W, Wei X, Jiao G, Chen W, Wu Y, et al. 2020. GBSS-BINDING PROTEIN, encoding a CBM48 domain-containing protein, affects rice quality and yield. Journal of Integrative Plant Biology 62:948−66 doi: 10.1111/jipb.12866
CrossRef Google Scholar
|
[30]
|
Zhang L, Li N, Zhang J, Zhao L, Qiu J, et al. 2022. The CBM48 domain-containing protein FLO6 regulates starch synthesis by interacting with SSIVb and GBSS in rice. Plant Molecular Biology 108:1−19 doi: 10.1007/s11103-021-01178-0
CrossRef Google Scholar
|
[31]
|
Tian Z, Qian Q, Liu Q, Yan M, Liu X, et al. 2009. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proceedings of the National Academy of Sciences of the United States of America 106:21760−65 doi: 10.1073/pnas.0912396106
CrossRef Google Scholar
|
[32]
|
Tan YF, Sun M, Xing YZ, Hua JP, Sun XL, et al. 2001. Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theoretical and Applied Genetics 103:1037−45 doi: 10.1007/s001220100665
CrossRef Google Scholar
|
[33]
|
Chen P, Shen Z, Ming L, Li Y, Dan W, et al. 2018. Genetic basis of variation in rice seed storage protein (Albumin, Globulin, Prolamin, and Glutelin) content revealed by genome-wide association analysis. Frontiers in Plant Science 9:612 doi: 10.3389/fpls.2018.00612
CrossRef Google Scholar
|
[34]
|
Xia D, Zhou H, Wang Y, Ao Y, Li Y, et al. 2022. qFC6, a major gene for crude fat content and quality in rice. Theoretical and Applied Genetics 135:2675−85 doi: 10.1007/s00122-022-04141-9
CrossRef Google Scholar
|
[35]
|
Xia D, Wang Y, Shi Q, Wu B, Yu X, et al. 2022. Effects of Wx genotype, nitrogen fertilization, and temperature on rice grain quality. Frontiers in Plant Science 13:901541 doi: 10.3389/fpls.2022.901541
CrossRef Google Scholar
|
[36]
|
Qiu X, Yang J, Zhang F, Niu Y, Zhao X, et al. 2021. Genetic dissection of rice appearance quality and cooked rice elongation by genome-wide association study. The Crop Journal 9:1470−80 doi: 10.1016/j.cj.2020.12.010
CrossRef Google Scholar
|
[37]
|
Deng Z, Liu Y, Gong C, Chen B, Wang T. 2022. Waxy is an important factor for grain fissure resistance and head rice yield as revealed by a genome-wide association study. Journal of Experimental Botany 73:6942−54 doi: 10.1093/jxb/erac330
CrossRef Google Scholar
|
[38]
|
Mandal S, Mandal RK. 2000. Seed storage proteins and approaches for improvement of their nutritional quality by genetic engineering. Current Science 79:576−89
Google Scholar
|
[39]
|
Zhao L, Pan T, Cai C, Wang J, Wei C. 2016. Application of whole sections of mature cereal seeds to visualize the morphology of endosperm cell and starch and the distribution of storage protein. Journal of Cereal Science 71:19−27 doi: 10.1016/j.jcs.2016.07.010
CrossRef Google Scholar
|
[40]
|
Long X, Guan C, Wang L, Jia L, Fu X, et al. 2023. Rice Storage Proteins: Focus on Composition, Distribution, Genetic Improvement and Effects on Rice Quality. Rice Science 30:207−21 doi: 10.1016/j.rsci.2023.03.005
CrossRef Google Scholar
|
[41]
|
Kubota M, Saito Y, Masumura T, Kumagai T, Watanabe R, et al. 2010. Improvement in the in vivo digestibility of rice protein by alkali extraction is due to structural changes in prolamin/protein body-I particle. Bioscience, Biotechnology, and Biochemistry 74:614−19 doi: 10.1271/bbb.90827
CrossRef Google Scholar
|
[42]
|
Tanaka K, Sugimoto T, Ogawa M, Kasai Z. 1980. Isolation and characterization of two types of protein bodies in the rice endosperm. Agricultural and Biological Chemistry 44:1633−39 doi: 10.1080/00021369.1980.10864167
CrossRef Google Scholar
|
[43]
|
Amagliani L, O’Regan J, Kelly AL, O'Mahony J. 2017. The composition, extraction, functionality and applications of rice proteins: A review. Trends in Food Science & Technology 64:1−12 doi: 10.1016/j.jpgs.2017.01.008
CrossRef Google Scholar
|
[44]
|
He W, Wang L, Lin Q, Yu F. 2021. Rice seed storage proteins: Biosynthetic pathways and the effects of environmental factors. Journal of Integrative Plant Biology 63:1999−2019 doi: 10.1111/jipb.13176
CrossRef Google Scholar
|
[45]
|
Singh V, Okadome H, Toyoshima H, Isobe S, Ohtsubo K. 2000. Thermal and physicochemical properties of rice grain, flour and starch. Journal of Agricultural and Food Chemistry 48:2639−47 doi: 10.1021/jf990374f
CrossRef Google Scholar
|
[46]
|
Martin M, Fitzgerald MA. 2002. Proteins in rice grains influence cooking properties! Journal of Cereal Science 36:285−94 doi: 10.1006/jcrs.2001.0465
CrossRef Google Scholar
|
[47]
|
Hamaker B, Griffin VK. 1990. Changing the viscoelastic properties of cooked rice through protein disruption. Cereal Chemistry 67:261−64
Google Scholar
|
[48]
|
Hamaker BR, Griffin VK. 1993. Effect of disulfide bond-containing protein on rice starch gelatinization and pasting. Cereal Chemistry 70:377−80
Google Scholar
|
[49]
|
Xie L, Chen N, Duan B, Zhu Z, Liao X. 2008. Impact of proteins on pasting and cooking properties of waxy and non-waxy rice. Journal of Cereal Science 47:372−79 doi: 10.1016/j.jcs.2007.05.018
CrossRef Google Scholar
|
[50]
|
Chávez-Murillo CE, Wang YJ, Quintero-Gutierrez AG, Bello-Pérez LA. 2011. Physicochemical, Textural, and Nutritional Characterization of Mexican Rice Cultivars. Cereal Chemistry 88:245−52 doi: 10.1094/CCHEM-10-10-0146
CrossRef Google Scholar
|
[51]
|
Baxter G, Blanchard C, Zhao J. 2014. Effects of glutelin and globulin on the physicochemical properties of rice starch and flour. Journal of Cereal Science 60:414−20 doi: 10.1016/j.jcs.2014.05.002
CrossRef Google Scholar
|
[52]
|
Baxter G, Blanchard C, Zhao J. 2004. Effects of prolamin on the textural and pasting properties of rice flour and starch. Journal of Cereal Science 40:205−11 doi: 10.1016/j.jcs.2004.07.004
CrossRef Google Scholar
|
[53]
|
Zhou Z, Robards K, Helliwell S, Blanchard C. 2010. Effect of storage temperature on rice thermal properties. Food Research International 43:709−15 doi: 10.1016/j.foodres.2009.11.002
CrossRef Google Scholar
|
[54]
|
Zhang YJ, Chen YY, Yan GJ, Du B, Zhou YR, et al. 2009. Effects of Nitrogen Nutrition on Grain Quality in Upland Rice Zhonghan 3 and Paddy Rice Yangjing 9538 Under Different Cultivation Methods. Acta Agronomica Sinica 35:1866−74 doi: 10.1016/S1875-2780(08)60112-1
CrossRef Google Scholar
|
[55]
|
Champagne ET, Bett-Garber KL, Thomson JL, Fitzgerald MA. 2009. Unraveling the impact of nitrogen nutrition on cooked rice flavor and texture. Cereal Chemistry 86:274−80 doi: 10.1094/cchem-86-3-0274
CrossRef Google Scholar
|
[56]
|
Okadome H. 2005. Application of Instrument-Based Multiple Texture Measurement of Cooked Milled-Rice Grains to Rice Quality Evaluation. Japan Agricultural Research Quarterly 39:261−68 doi: 10.6090/jarq.39.261
CrossRef Google Scholar
|
[57]
|
Yang Y, Shen Z, Li Y, Xu C, Xia H, et al. 2022. Rapid improvement of rice eating and cooking quality through gene editing toward glutelin as target. Journal of Integrative Plant Biology 64:1860−65 doi: 10.1111/jipb.13334
CrossRef Google Scholar
|
[58]
|
Ohtsubo K, Nakamura S. 2017. Evaluation of Palatability of Cooked Rice. In Advances in International Rice Research, ed. Li J. Rijeka: IntechOpen. https://doi.org/10.5772/66398
|
[59]
|
Chikubu S, Watanabe S, Sugimoto T, Manabe N, Sakai F, et al. 1985. Establishment of palatability estimation formula of rice by multiple regression analysis. Journal of the Japanese Society of Starch Science 32:51−60 doi: 10.5458/jag1972.32.51
CrossRef Google Scholar
|
[60]
|
Fitzgerald MA, McCouch SR, Hall RD. 2009. Not just a grain of rice: The quest for quality. Trends in Plant Science 14:133−39 doi: 10.1016/j.tplants.2008.12.004
CrossRef Google Scholar
|
[61]
|
Li H, Prakash S, Nicholson TM, Fitzgerald MA, Gilbert RG. 2015. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chemistry 196:702−11 doi: 10.1016/j.foodchem.2015.09.112
CrossRef Google Scholar
|
[62]
|
Zhou L, Zhang C, Zhang Y, Wang C, Liu Q. 2022. Genetic manipulation of endosperm amylose for designing superior quality rice to meet the demands in the 21st century. Journal of Cereal Science 105:103481 doi: 10.1016/j.jcs.2022.103481
CrossRef Google Scholar
|
[63]
|
Huang L, Tan H, Zhang C, Li Q, Liu Q. 2021. Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Communications 2:100237 doi: 10.1016/j.xplc.2021.100237
CrossRef Google Scholar
|
[64]
|
Li P, Chen YH, Lu J, Zhang CQ, Liu QQ, et al. 2022. Genes and their molecular functions determining seed structure, components, and quality of rice. Rice 15:18 doi: 10.1186/s12284-022-00562-8
CrossRef Google Scholar
|
[65]
|
Adebowale KO, Lawal OS. 2003. Functional properties and retrogradation behaviour of native and chemically modified starch of mucuna bean (Mucuna pruriens). Journal of the Science of Food and Agriculture 83:1541−6 doi: 10.1002/jsfa.1569
CrossRef Google Scholar
|
[66]
|
Singh J, Kaur L, McCarthy OJ. 2007. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids 21:1−22 doi: 10.1016/j.foodhyd.2006.02.006
CrossRef Google Scholar
|
[67]
|
Wang S, Li C, Copeland L, Niu Q, Wang S. 2015. Starch Retrogradation: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety 14:568−85 doi: 10.1111/1541-4337.12143
CrossRef Google Scholar
|
[68]
|
Sanadya A, Yadu A, Raj J, Chandrakar H, Singh R. 2023. Effect of temperature on growth, quality, yield attributing characters and yield of rice – A review. International Journal of Environment and Climate Change 13:804−14 doi: 10.9734/ijecc/2023/v13i82014
CrossRef Google Scholar
|
[69]
|
Tsukaguchi T, Iida Y. 2008. Effects of assimilate supply and high temperature during grain-filling period on the occurrence of various types of chalky kernels in rice plants (Oryza sativa L.). Plant Production Science 11:203−10 doi: 10.1626/pps.11.203
CrossRef Google Scholar
|
[70]
|
Jin Z, Qian C, Yang J, Liu H, Jin X. 2005. Effect of temperature at grain filling stage on activities of key enzymes related to starch synthesis and grain quality of rice. Rice Science 12:261−66
Google Scholar
|
[71]
|
Liang CG, Liu J, Wang Y, Xiong D, Ding CB, et al. 2015. Low light during grain filling stage Deteriorates rice cooking quality, but not nutritional value. Rice Science 22:197−206 doi: 10.1016/j.rsci.2015.04.003
CrossRef Google Scholar
|
[72]
|
Goufo P, Falco V, Brites C, Wessel DF, Kratz S, et al. 2014. Effect of Elevated Carbon Dioxide Concentration on Rice Quality: Nutritive Value, Color, Milling, Cooking, and Eating Qualities. Cereal Chemistry 91:513−21 doi: 10.1094/CCHEM-12-13-0256-R
CrossRef Google Scholar
|
[73]
|
Bloom AJ, Burger M, Rubio Asensio JS, Cousins AB. 2010. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328:899−903 doi: 10.1126/science.1186440
CrossRef Google Scholar
|
[74]
|
Lal R. 2007. Anthropogenic Influences on World Soils and Implications to Global Food Security. Advances in Agronomy 93:69−93 doi: 10.1016/S0065-2113(06)93002-8
CrossRef Google Scholar
|
[75]
|
Dingkuhn M, Le Gal PY. 1996. Effect of drainage date on yield and dry matter partitioning in irrigated rice. Field Crops Research 46:117−26 doi: 10.1016/0378-4290(95)00094-1
CrossRef Google Scholar
|
[76]
|
Cheng W, Zhang G, Zhao G, Yao H, Xu H. 2003. Variation in rice quality of different cultivars and grain positions as affected by water management. Field Crops Research 80:245−52 doi: 10.1016/S0378-4290(02)00193-4
CrossRef Google Scholar
|
[77]
|
Upadhyay R, Banjara M, Thombare D, Yankanchi S, Chandel G. 2021. Deciphering the effect of different nitrogen doses on grain protein content, quality attributes and yield related traits of rice. Oryza-An International Journal on Rice 58:530−9 doi: 10.35709/ory.2021.58.4.9
CrossRef Google Scholar
|
[78]
|
Chen Y, Wang M, Ouwerkerk PBF. 2012. Molecular and environmental factors determining grain quality in rice. Food and Energy Security 1:111−32 doi: 10.1002/fes3.11
CrossRef Google Scholar
|
[79]
|
Bahmaniar MA, Ranjbar GA. 2007. Response of Rice (Oryza sativa L.) Cooking Quality Properties to Nitrogen and Potassium Application. Pakistan Journal of Biological Sciences 10:1880−84 doi: 10.3923/pjbs.2007.1880.1884
CrossRef Google Scholar
|
[80]
|
Siscar-Lee JJH, Juliano BO, Qureshi RH, Akbar M. 1990. Effect of saline soil on grain quality of rices differing in salinity tolerance. Plant Foods for Human Nutrition 40:31−36 doi: 10.1007/BF02193777
CrossRef Google Scholar
|
[81]
|
Hillerislambers D, Rutger JN, Qualset CO, Wiser WJ. 1973. Genetic and environmental variation in protein content of rice (Oryza sativa L.). Euphytica 22:264−73 doi: 10.1007/BF00022634
CrossRef Google Scholar
|
[82]
|
Tsuzuki E, Furusho M. 1986. Studies on the Characteristics of Scented Rice: X. A trial of rice breeding for high protein variety (2). Japanese Journal of Crop Science 55:7−14 doi: 10.1626/jcs.55.7
CrossRef Google Scholar
|
[83]
|
Yang Y, Guo M, Sun S, Zou Y, Yin S, et al. 2019. Natural variation of OsGluA2 is involved in grain protein content regulation in rice. Nature Communications 10:1949 doi: 10.1038/s41467-019-09919-y
CrossRef Google Scholar
|
[84]
|
Liu Z, Cheng F, Zhang G. 2005. Grain phytic acid content in japonica rice as affected by cultivar and environment and its relation to protein content. Food Chemistry 89:49−52 doi: 10.1016/j.foodchem.2004.01.081
CrossRef Google Scholar
|
[85]
|
Webb BD, Bollich CN, Adair CR, Johnston TH. 1968. Characteristics of rice varieties in the U.S. department of agriculture collection. Crop Science 8:361−65 doi: 10.2135/cropsci1968.0011183x000800030029x
CrossRef Google Scholar
|
[86]
|
Aluko G, Martinez C, Tohme J, Castano Rodriguez C, Bergman C, et al. 2004. QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O. glaberrima. Theoretical and Applied Genetics 109:630−39 doi: 10.1007/s00122-004-1668-y
CrossRef Google Scholar
|
[87]
|
Hu ZL, Li P, Zhou MQ, Zhang Z, Wang LX, et al. 2004. Mapping of quantitative trait loci (QTLs) for rice protein and fat content using doubled haploid lines. Euphytica 135:47−54 doi: 10.1023/B:EUPH.0000009539.38916.32
CrossRef Google Scholar
|
[88]
|
Kepiro JL, McClung AM, Chen MH, Yeater K, Fjellstrom RG. 2008. Mapping QTLs for milling yield and grain characteristics in a tropical japonica long grain cross. Journal of Cereal Science 48:477−85 doi: 10.1016/j.jcs.2007.12.001
CrossRef Google Scholar
|
[89]
|
Wang L, Zhong M, Li X, Yuan D, Xu Y, et al. 2008. The QTL controlling amino acid content in grains of rice (Oryza sativa) are co-localized with the regions involved in the amino acid metabolism pathway. Molecular Breeding 21:127−37 doi: 10.1007/s11032-007-9141-7
CrossRef Google Scholar
|
[90]
|
Lou J, Chen L, Yue G, Lou Q, Mei H, et al. 2009. QTL mapping of grain quality traits in rice. Journal of Cereal Science 50:145−51 doi: 10.1016/j.jcs.2009.04.005
CrossRef Google Scholar
|
[91]
|
Ye G, Liang S, Wan J. 2010. QTL mapping of protein content in rice using single chromosome segment substitution lines. Theoretical and Applied Genetics 121:741−50 doi: 10.1007/s00122-010-1345-2
CrossRef Google Scholar
|
[92]
|
Liu X, Wan X, Ma X, Wan J. 2010. Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments. Genome 54:64−80 doi: 10.1139/G10-070
CrossRef Google Scholar
|
[93]
|
Bruno E, Choi YS, Chung IK, Kim KM. 2017. QTLs and analysis of the candidate gene for amylose, protein, and moisture content in rice (Oryza sativa L.). 3 Biotech 7:40 doi: 10.1007/s13205-017-0687-8
CrossRef Google Scholar
|
[94]
|
Kashiwagi T, Munakata J. 2018. Identification and characteristics of quantitative trait locus for grain protein content, TGP12, in rice (Oryza sativa L.). Euphytica 214:165 doi: 10.1007/s10681-018-2249-5
CrossRef Google Scholar
|
[95]
|
Park SG, Park HS, Baek MK, Jeong JM, Cho YC, et al. 2019. Improving the glossiness of cooked rice, an important component of visual rice grain quality. Rice 12:87 doi: 10.1186/s12284-019-0348-0
CrossRef Google Scholar
|
[96]
|
Zhang W, Bi J, Chen L, Zheng L, Ji S, et al. 2008. QTL mapping for crude protein and protein fraction contents in rice (Oryza sativa L.). Journal of Cereal Science 48:539−47 doi: 10.1016/j.jcs.2007.11.010
CrossRef Google Scholar
|
[97]
|
Yu YH, Li G, Fan Y, Zhang KQ, Min J, et al. 2009. Genetic relationship between grain yield and the contents of protein and fat in a recombinant inbred population of rice. Journal of Cereal Science 50:121−25 doi: 10.1016/j.jcs.2009.03.008
CrossRef Google Scholar
|
[98]
|
Zheng L, Zhang W, Chen X, Ma J, Chen W, et al. 2011. Dynamic QTL Analysis of Rice Protein Content and Protein Index Using Recombinant Inbred Lines. Journal of Plant Biology 54:321−28 doi: 10.1007/s12374-011-9170-y
CrossRef Google Scholar
|
[99]
|
Cruz M, Arbelaez J, Loaiza K, Cuasquer J, Rosas J, et al. 2021. Genetic and phenotypic characterization of rice grain quality traits to define research strategies for improving rice milling, appearance, and cooking qualities in Latin America and the Caribbean. The Plant Genome 14:e20134 doi: 10.1002/tpg2.20134
CrossRef Google Scholar
|
[100]
|
Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, et al. 2019. Breeding crops to feed 10 billion. Nature Biotechnology 37:744−54 doi: 10.1038/s41587-019-0152-9
CrossRef Google Scholar
|
[101]
|
Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, et al. 2017. Genomic selection in plant breeding: Methods, models, and perspectives. Trends in Plant Science 22:961−75 doi: 10.1016/j.tplants.2017.08.011
CrossRef Google Scholar
|
[102]
|
Chen W, Gao Y, Xie W, Gong L, Lu K, et al. 2014. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature Communications 46:714−21 doi: 10.1038/ng.3007
CrossRef Google Scholar
|
[103]
|
Chen P, Lou G, Wang Y, Chen J, Chen W, et al. 2022. The genetic basis of grain protein content in rice by genome-wide association analysis. Molecular Breeding 43:1 doi: 10.1007/s11032-022-01347-z
CrossRef Google Scholar
|
[104]
|
Huang X, Zhao Y, Wei X, Li C, Wang A, et al. 2011. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics 44:32−39 doi: 10.1038/ng.1018
CrossRef Google Scholar
|
[105]
|
Verma RK, Chetia SK, Sharma V, Baishya S, Sharma H, et al. 2022. GWAS to spot candidate genes associated with grain quality traits in diverse rice accessions of North East India. Molecular Biology Reports 49:5365−77 doi: 10.1007/s11033-021-07113-2
CrossRef Google Scholar
|
[106]
|
Wang X, Pang Y, Zhang J, Wu Z, Chen K, et al. 2017. Genome-wide and gene-based association mapping for rice eating and cooking characteristics and protein content. Scientific Reports 7:17203 doi: 10.1038/s41598-017-17347-5
CrossRef Google Scholar
|
[107]
|
Zhang Y, Zhang S, Zhang J, Wei W, Zhu T, et al. 2023. Improving rice eating and cooking quality by enhancing endogenous expression of a nitrogen-dependent floral regulator. Plant Biotechnology Journal doi: 10.1111/pbi.14160
CrossRef Google Scholar
|
[108]
|
Li S, Tian Y, Wu K, Ye Y, Yu J, et al. 2018. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560:595−600 doi: 10.1038/s41586-018-0415-5
CrossRef Google Scholar
|
[109]
|
Fang L, Ma L, Zhao S, Cao R, Jiao G, et al. 2022. Alanine aminotransferase (OsAlaAT1) modulates nitrogen utilization, grain yield and quality in rice. Journal of Genetics and Genomics 49:510−13 doi: 10.1016/j.jgg.2022.02.028
CrossRef Google Scholar
|
[110]
|
Huang Y, Wang H, Zhu Y, Huang X, Li S, et al. 2022. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature 612:292−300 doi: 10.1038/s41586-022-05441-2
CrossRef Google Scholar
|
[111]
|
Wei S, Li X, Lu Z, Zhang H, Ye X, et al. 2022. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science 377:eabi8455 doi: 10.1126/science.abi8455
CrossRef Google Scholar
|
[112]
|
McKenzie KS, Rutger JN. 1983. Genetic Analysis of Amylose Content, Alkali Spreading Score, and Grain Dimensions in Rice. Crop Science 23:306−13 doi: 10.2135/cropsci1983.0011183x002300020031x
CrossRef Google Scholar
|
[113]
|
Schaeffer GW, Sharpe FT. 1990. Modification of amino acid composition of endosperm proteins from in-vitro-selected high lysine mutants in rice. Theoretical and Applied Genetics 80:841−46 doi: 10.1007/BF00224202
CrossRef Google Scholar
|
[114]
|
Schaeffer GW, Sharpe FT. 1987. Increased Lysine and Seed Storage Protein in Rice Plants Recovered from Calli Selected with Inhibitory Levels of Lysine plus Threonine and S-(2-Aminoethyl)cysteine. Plant Physiology 84:509−15 doi: 10.1104/pp.84.2.509
CrossRef Google Scholar
|
[115]
|
Juliano BO, Antonio AA, Esmama BV. 1973. Effects of Protein Content on the Distribution and Properties of Rice Protein. Journal of the Science of Food and Agriculture 24:295−306 doi: 10.1002/jsfa.2740240306
CrossRef Google Scholar
|
[116]
|
Mochizuki T, Hara S. 2000. Usefulness of the low protein rice on the diet therapy in patients with chronic renal failure. Nihon Jinzo Gakkai shi 42:24−29(In Japanese
Google Scholar
|
[117]
|
Zhang Y, Zhang S, Zhou J, Lin J, Wang Y, et al. 2015. Enhancement and identification of new rice germplasms with low glutelin content. Journal of Plant Genetic Resources 16:158−62 doi: 10.13430/j.cnki.jpgr.2015.01.024
CrossRef Google Scholar
|
[118]
|
Lee SI, Kim HU, Lee YH, Suh SC, Lim YP, et al. 2001. Constitutive and seed-specific expression of a maize lysine-feedback-insensitive dihydrodipicolinate synthase gene leads to increased free lysine levels in rice seeds. Molecular Breeding 8:75−84 doi: 10.1023/A:1011977219926
CrossRef Google Scholar
|
[119]
|
Liu X, Zhang C, Wang X, Liu Q, Yuan D, et al. 2016. Development of high-lysine rice via endosperm-specific expression of a foreign LYSINE RICH PROTEIN gene. BMC Plant Biology 16:147 doi: 10.1186/s12870-016-0837-x
CrossRef Google Scholar
|
[120]
|
Lee TTT, Wang MMC, Hou RCW, Chen LJ, Su RC, et al. 2003. Enhanced Methionine and Cysteine Levels in Transgenic Rice Seeds by the Accumulation of Sesame 2S Albumin. Bioscience, Biotechnology, and Biochemistry 67:1699−705 doi: 10.1271/bbb.67.1699
CrossRef Google Scholar
|
[121]
|
Hagan ND, Upadhyaya N, Tabe LM, Higgins TJV. 2003. The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. The Plant Journal 34:1−11 doi: 10.1046/j.1365-313X.2003.01699.x
CrossRef Google Scholar
|
[122]
|
Zhou Y, Cai H, Xiao J, Li X, Zhang Q, Lian X. 2009. Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theoretical and Applied Genetics 118:1381−90 doi: 10.1007/s00122-009-0988-3
CrossRef Google Scholar
|
[123]
|
Wakasa K, Hasegawa H, Nemoto H, Matsuda F, Miyazawa H, et al. 2006. High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. Journal of Experimental Botany 57:3069−78 doi: 10.1093/jxb/erl068
CrossRef Google Scholar
|
[124]
|
Bashirullah A, Cooperstock RL, Lipshitz HD. 2001. Spatial and temporal control of RNA stability. Proceedings of the National Academy of Sciences of the United States of America 98:7025−28 doi: 10.1073/pnas.111145698
CrossRef Google Scholar
|
[125]
|
Hollams EM, Giles KM, Thomson AM, Leedman PJ. 2002. mRNA stability and the control of gene expression: Implications for human disease. Neurochemical Research 27:957−80 doi: 10.1023/A:1020992418511
CrossRef Google Scholar
|
[126]
|
Merritt C, Rasoloson D, Ko D, Seydoux G. 2008. 3′ UTRs are the primary regulators of gene expression in the C. elegans germline. Current Biology 18:1476−82 doi: 10.1016/j.cub.2008.08.013
CrossRef Google Scholar
|
[127]
|
Li WJ, Dai LL, Chai ZJ, Yin ZJ, Qu LQ. 2012. Evaluation of seed storage protein gene 3′-untranslated regions in enhancing gene expression in transgenic rice seed. Transgenic Research 21:545−53 doi: 10.1007/s11248-011-9552-4
CrossRef Google Scholar
|
[128]
|
Yang L, Wakasa Y, Kawakatsu T, Takaiwa F. 2009. The 3′-untranslated region of rice glutelin GluB-1 affects accumulation of heterologous protein in transgenic rice. Biotechnology Letters 31:1625−31 doi: 10.1007/s10529-009-0056-8
CrossRef Google Scholar
|
[129]
|
Chen Z, Du H, Tao Y, Xu Y, Wang F, et al. 2022. Efficient breeding of low glutelin content rice germplasm by simultaneous editing multiple glutelin genes via CRISPR/Cas9. Plant Science 324:111449 doi: 10.1016/j.plantsci.2022.111449
CrossRef Google Scholar
|
[130]
|
Kang HG, Park S, Matsuoka M, An G. 2005. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). The Plant journal 42:901−11 doi: 10.1111/j.1365-313X.2005.02423.x
CrossRef Google Scholar
|
[131]
|
Long W, Dong B, Wang Y, Pan P, Wang Y, et al. 2017. FLOURY ENDOSPERM8, encoding the UDP-glucose pyrophosphorylase 1, affects the synthesis and structure of starch in rice endosperm. Journal of Plant Biology 60:513−22 doi: 10.1007/s12374-017-0066-3
CrossRef Google Scholar
|
[132]
|
Yang J, Kim SR, Lee SK, Choi H, Jeon JS, et al. 2015. Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm. Plant Science 240:79−89 doi: 10.1016/j.plantsci.2015.07.027
CrossRef Google Scholar
|
[133]
|
Zhong M, Liu X, Liu F, Ren Y, Wang Y, et al. 2019. FLOURY ENDOSPERM12 encoding alanine aminotransferase 1 regulates carbon and nitrogen metabolism in rice. Journal of Plant Biology 62:61−73 doi: 10.1007/s12374-018-0288-z
CrossRef Google Scholar
|
[134]
|
You X, Zhang W, Hu J, Jing R, Cai Y, et al. 2019. FLOURY ENDOSPERM15 encodes a glyoxalase I involved in compound granule formation and starch synthesis in rice endosperm. Plant Cell Reports 38:345−59 doi: 10.1007/s00299-019-02370-9
CrossRef Google Scholar
|
[135]
|
Teng X, Zhong M, Zhu X, Wang C, Ren Y, et al. 2019. FLOURY ENDOSPERM16 encoding a NAD-dependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice. Plant Biotechnology Journal 17:1914−27 doi: 10.1111/pbi.13108
CrossRef Google Scholar
|
[136]
|
Long W, Wang Y, Zhu S, Jing W, Wang Y, et al. 2018. FLOURY SHRUNKEN ENDOSPERM1 connects phospholipid metabolism and amyloplast development in rice. Plant Physiology 177:698−712 doi: 10.1104/pp.17.01826
CrossRef Google Scholar
|
[137]
|
Tang XJ, Peng C, Zhang J, Cai Y, You XM, et al. 2016. ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm. Plant Science 249:70−83 doi: 10.1016/j.plantsci.2016.05.010
CrossRef Google Scholar
|
[138]
|
Chen Y, Luo L, Xu F, Xu X, Bao J. 2022. Carbohydrate repartitioning in the riceStarch Branching Enzyme IIb mutant stimulates higher resistant starch content and lower seed weight revealed by multiomics analysis. Journal of Agricultural and Food Chemistry 70:9802−16 doi: 10.1021/acs.jafc.2c03737
CrossRef Google Scholar
|
[139]
|
Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, et al. 2008. Mutation of the plastidial α-Glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. The Plant Cell 20:1833−49 doi: 10.1105/tpc.107.054007
CrossRef Google Scholar
|
[140]
|
Yang H, Liu L, Wu K, Liu S, Liu X, et al. 2021. FLOURY AND SHRUNKEN ENDOSPERM6 encodes a glycosyltransferase and is essential for the development of rice endosperm. Journal of Plant Biology 65:187−98 doi: 10.1007/s12374-020-09293-z
CrossRef Google Scholar
|
[141]
|
Cai Y, Li S, Jiao G, Sheng Z, Wu Y, et al. 2018. OsPK2 encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis, compound granule formation and grain filling. Plant Biotechnology Journal 16:1878−91 doi: 10.1111/pbi.12923
CrossRef Google Scholar
|
[142]
|
Wang E, Wang J, Zhu X, Hao W, Wang L, et al. 2008. Control of rice grain-filling and yield by a gene with potential signature of domestication. Nature Genetics 40:1370−74 doi: 10.1038/ng.220
CrossRef Google Scholar
|
[143]
|
Han X, Wang Y, Liu X, Jiang L, Ren Y, et al. 2012. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice. Journal of Experimental Botany 63:121−30 doi: 10.1093/jxb/err262
CrossRef Google Scholar
|
[144]
|
Matsushima R, Maekawa M, Kusano M, Tomita K, Kondo H, et al. 2016. Amyloplast membrane protein SUBSTANDARD STARCH GRAIN6 controls starch grain size in rice endosperm. Plant Physiology 170:1445−59 doi: 10.1104/pp.15.01811
CrossRef Google Scholar
|
[145]
|
Duan E, Wang Y, Liu L, Zhu J, Zhong M, et al. 2016. Pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) regulates carbon metabolism during grain filling in rice. Plant Cell Reports 35:1321−31 doi: 10.1007/s00299-016-1964-4
CrossRef Google Scholar
|
[146]
|
Lei J, Teng X, Wang Y, Jiang X, Zhao H, et al. 2022. Plastidic pyruvate dehydrogenase complex E1 component subunit alpha1 is involved in galactolipid biosynthesis required for amyloplast development in rice. Plant Biotechnology Journal 20:437−53 doi: 10.1111/pbi.13727
CrossRef Google Scholar
|
[147]
|
Chen X, Ji Y, Zhao W, Niu H, Yang X, et al. 2023. Fructose-6-phosphate-2-kinase/Fructose-2, 6-bisphosphatase Regulates Energy Metabolism and Synthesis of Storage Products in Developing Rice Endosperm. Plant Science 326:111503 doi: 10.1016/j.plantsci.2022.111503
CrossRef Google Scholar
|
[148]
|
Hwang SK, Koper K, Satoh H, Okita TW. 2016. Rice endosperm starch phosphorylase (Pho1) assembles with disproportionating enzyme (Dpe1) to form a protein complex that enhances synthesis of malto-oligosaccharides. Journal of Biological Chemistry 291:19994−20007 doi: 10.1074/jbc.M116.735449
CrossRef Google Scholar
|
[149]
|
Xiong Y, Ren Y, Li W, Wu F, Yang W, et al. 2019. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice. Journal of Experimental Botany 70:3765−80 doi: 10.1093/jxb/erz168
CrossRef Google Scholar
|
[150]
|
Kawakatsu T, Yamamoto MP, Touno SM, Yasuda H, Takaiwa F. 2009. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice. The Plant journal 59:908−20 doi: 10.1111/j.1365-313X.2009.03925.x
CrossRef Google Scholar
|
[151]
|
Nakase M, Aoki N, Matsuda T, Adachi T. 1997. Characterization of a novel rice bZIP protein which binds to the α-globulin promoter. Plant Molecular Biology 33:513−22 doi: 10.1023/A:1005784717782
CrossRef Google Scholar
|
[152]
|
Wu MW, Liu J, Bai X, Chen WQ, Ren Y, et al. 2023. Transcription factors NAC20 and NAC26 interact with RPBF to activate albumin accumulations in rice endosperm. Plant Biotechnology Journal 21:890−92 doi: 10.1111/pbi.13994
CrossRef Google Scholar
|
[153]
|
She KC, Kusano H, Koizumi K, Yamakawa H, Hakata M, et al. 2010. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. The Plant Cell 22:3280−94 doi: 10.1105/tpc.109.070821
CrossRef Google Scholar
|
[154]
|
Peng C, Wang Y, Liu F, Ren Y, Zhou K, et al. 2014. FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. The Plant Journal 77:917−30 doi: 10.1111/tpj.12444
CrossRef Google Scholar
|
[155]
|
Zhang L, Ren Y, Lu B, Yang C, Feng Z, et al. 2016. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. Journal of Experimental Botany 67:633−47 doi: 10.1093/jxb/erv469
CrossRef Google Scholar
|
[156]
|
Tabassum R, Dosaka T, Ichida H, Morita R, Ding Y, et al. 2020. FLOURY ENDOSPERM11-2 encodes plastid HSP70-2 involved with the temperature-dependent chalkiness of rice (Oryza sativa L.) grains. The Plant Journal 103:604−16 doi: 10.1111/tpj.14752
CrossRef Google Scholar
|
[157]
|
Fu FF, Xue HW. 2010. Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiology 154:927−38 doi: 10.1104/pp.110.159517
CrossRef Google Scholar
|
[158]
|
Li Z, Wei X, Tong X, Zhao J, Liu X, et al. 2022. The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice. Molecular Plant 15:706−22 doi: 10.1016/j.molp.2022.01.016
CrossRef Google Scholar
|
[159]
|
Ren Y, Huang Z, Jiang H, Wang Z, Wu F, et al. 2021. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. Journal of Experimental Botany 72:2947−64 doi: 10.1093/jxb/erab027
CrossRef Google Scholar
|
[160]
|
Jin SK, Zhang MQ, Leng YJ, Xu LN, Jia SW, et al. 2022. OsNAC129 regulates seed development and plant growth and participates in the brassinosteroid signaling pathway. Frontiers in Plant Science 13:905148 doi: 10.3389/fpls.2022.905148
CrossRef Google Scholar
|
[161]
|
Yu X, Xia S, Xu Q, Cui Y, Gong M, et al. 2020. ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality. Science China Life Sciences 63:228−38 doi: 10.1007/s11427-019-1593-0
CrossRef Google Scholar
|
[162]
|
Yang X, Wu F, Lin X, Du X, Chong K, et al. 2012. Live and Let Die - The Bsister MADS-Box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa). PLoS One 7:e51435 doi: 10.1371/journal.pone.0051435
CrossRef Google Scholar
|
[163]
|
Liu J, Wu X, Yao X, Yu R, Larkin P, Liu C-M. 2018. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proceedings of the National Academy of Sciences of the United States of America 115:201806304 doi: 10.1073/pnas.1806304115
CrossRef Google Scholar
|
[164]
|
Yan M, Pan T, Zhu Y, Jiang X, Yu M, et al. 2022. FLOURY ENDOSPERM20 encoding SHMT4 is required for rice endosperm development. Plant Biotechnology Journal 20:1438−40 doi: 10.1111/pbi.13858
CrossRef Google Scholar
|
[165]
|
Wu M, Ren Y, Cai M, Wang Y, Zhu S, et al. 2019. Rice FLOURY ENDOSPERM10 encodes a pentatricopeptide repeat protein that is essential for the trans-splicing of mitochondrial nad1 intron 1 and endosperm development. New Phytologist 223:736−50 doi: 10.1111/nph.15814
CrossRef Google Scholar
|
[166]
|
Xue M, Liu L, Yu Y, Zhu J, Gao H, et al. 2019. Lose-of-function of a rice nucleolus-localized pentatricopeptide repeat protein is responsible for the floury endosperm14 mutant phenotypes. Rice 12:100 doi: 10.1186/s12284-019-0359-x
CrossRef Google Scholar
|
[167]
|
Yu M, Wu M, Ren Y, Wang Y, Li J, et al. 2021. Rice FLOURY ENDOSPERM 18 encodes a pentatricopeptide repeat protein required for 5′ processing of mitochondrial nad5 mRNA and endosperm development. Journal of Integrative Plant Biology 63:834−47 doi: 10.1111/jipb.13049
CrossRef Google Scholar
|
[168]
|
Kim SR, Yang JI, Moon S, Ryu CH, An K, et al. 2009. Rice OGR1 encodes a pentatricopeptide repeat–DYW protein and is essential for RNA editing in mitochondria. The Plant Journal 59:738−49 doi: 10.1111/j.1365-313X.2009.03909.x
CrossRef Google Scholar
|
[169]
|
Hao Y, Wang Y, Wu M, Zhu X, Teng X, et al. 2019. The nucleus-localized PPR protein OsNPPR1 is important for mitochondrial function and endosperm development in rice. Journal of Experimental Botany 70:4705−20 doi: 10.1093/jxb/erz226
CrossRef Google Scholar
|
[170]
|
Yang H, Wang Y, Tian Y, Teng X, Lv Z, et al. 2022. Rice FLOURY ENDOSPERM22, encoding a pentatricopeptide repeat protein, is involved in both mitochondrial RNA splicing and editing and is crucial for endosperm development. Journal of Integrative Plant Biology 65:755−71 doi: 10.1111/jipb.13402
CrossRef Google Scholar
|
[171]
|
Wang R, Ren Y, Yan H, Teng X, Zhu X, et al. 2021. ENLARGED STARCH GRAIN1 affects amyloplast development and starch biosynthesis in rice endosperm. Plant Science 305:110831 doi: 10.1016/j.plantsci.2021.110831
CrossRef Google Scholar
|
[172]
|
Li S, Wei X, Ren Y, Qiu J, Jiao G, et al. 2017. OsBT1 encodes an ADP-glucose transporter involved in starch synthesis and compound granule formation in rice endosperm. Scientific Reports 7:40124 doi: 10.1038/srep40124
CrossRef Google Scholar
|
[173]
|
Wakasa Y, Yasuda H, Oono Y, Kawakatsu T, Hirose S, et al. 2011. Expression of ER quality control-related genes in response to changes in BiP1 levels in developing rice endosperm. The Plant Journal 65:675−89 doi: 10.1111/j.1365-313X.2010.04453.x
CrossRef Google Scholar
|
[174]
|
Wang X, Zhou W, Lu Z, Ouyang Y, Chol Su O, et al. 2015. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice. Plant Science 239:200−8 doi: 10.1016/j.plantsci.2015.07.016
CrossRef Google Scholar
|
[175]
|
Wang Y, Ren Y, Liu X, Jiang L, Chen L, et al. 2010. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. The Plant Journal 64:812−24 doi: 10.1111/j.1365-313X.2010.04370.x
CrossRef Google Scholar
|
[176]
|
Tian L, Dai LL, Yin ZJ, Fukuda M, Kumamaru T, et al. 2013. Small GTPase Sar1 is crucial for proglutelin and α-globulin export from the endoplasmic reticulum in rice endosperm. Journal of Experimental Botany 64:2831−45 doi: 10.1093/jxb/ert128
CrossRef Google Scholar
|
[177]
|
Ren Y, Wang Y, Liu F, Zhou K, Ding Y, et al. 2014. GLUTELIN PRECURSOR ACCUMULATION3 encodes a regulator of post-golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm. The Plant Cell 26:410−25 doi: 10.1105/tpc.113.121376
CrossRef Google Scholar
|
[178]
|
Wang Y, Liu F, Ren Y, Wang Y, Liu X, et al. 2016. GOLGI TRANSPORT 1B regulates protein export from endoplasmic reticulum in rice endosperm cells. The Plant Cell 28:2850−65 doi: 10.1105/tpc.16.00717
CrossRef Google Scholar
|
[179]
|
Ren Y, Wang Y, Pan T, Wang Y, Wang Y, et al. 2020. GPA5 encodes a Rab5a effector required for post-golgi trafficking of rice storage proteins. The Plant Cell 32:758−77 doi: 10.1105/tpc.19.00863
CrossRef Google Scholar
|
[180]
|
Liu F, Ren Y, Wang Y, Peng C, Zhou K, et al. 2013. OsVPS9A functions cooperatively with OsRAB5A to regulate post-golgi dense vesicle-mediated storage protein trafficking to the protein storage vacuole in rice endosperm cells. Molecular Plant 6:1918−32 doi: 10.1093/mp/sst081
CrossRef Google Scholar
|
[181]
|
Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. 2011. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233:175−88 doi: 10.1007/s00425-010-1289-4
CrossRef Google Scholar
|
[182]
|
Matsushima R, Maekawa M, Kusano M, Kondo H, Fujita N, et al. 2014. Amyloplast-localized SUBSTANDARD STARCH GRAIN4 protein influences the size of starch grains in rice endosperm. Plant Physiology 164:623−36 doi: 10.1104/pp.113.229591
CrossRef Google Scholar
|
[183]
|
Gao Y, Xu Z, Zhang L, Li S, Wang S, et al. 2020. MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. Nature Communications 11:5219 doi: 10.1038/s41467-020-19019-x
CrossRef Google Scholar
|
[184]
|
Zhang Y, Tan L, Zhu Z, Yuan L, Xie D, et al. 2015. TOND1 confers tolerance of nitrogen deficiency in rice. The Plant Journal 81:367−76 doi: 10.1111/tpj.12736
CrossRef Google Scholar
|
[185]
|
Zhao M, Zhao M, Gu S, Sun J, Ma Z, et al. 2019. DEP1 is involved in regulating the carbon-nitrogen metabolic balance to affect grain yield and quality in rice (Oriza sativa L.). PLoS One 14:e0213504 doi: 10.1371/journal.pone.0213504
CrossRef Google Scholar
|
[186]
|
Liu Y, Wang H, Jiang Z, Wang W, Xu R, et al. 2021. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature 590:600−5 doi: 10.1038/s41586-020-03091-w
CrossRef Google Scholar
|
[187]
|
Wu K, Wang S, Song W, Zhang J, Wang Y, et al. 2020. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367:eaaz2046 doi: 10.1126/science.aaz2046
CrossRef Google Scholar
|
[188]
|
Tang W, Ye J, Yao X, Zhao P, Xuan W, et al. 2019. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications 10:5279 doi: 10.1038/s41467-019-13187-1
CrossRef Google Scholar
|
[189]
|
Gao Z, Wang Y, Chen G, Zhang A, Yang S, et al. 2019. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nature Communications 10:5207 doi: 10.1038/s41467-019-13110-8
CrossRef Google Scholar
|
[190]
|
Hu B, Wang W, Ou S, Tang J, Li H, et al. 2015. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics 47:834−38 doi: 10.1038/ng.3337
CrossRef Google Scholar
|
[191]
|
Wang Q, Su Q, Nian J, Zhang J, Guo M, et al. 2021. The Ghd7 transcription factor represses the ARE1 expression to enhance nitrogen utilization and grain yield in rice. Molecular Plant 23:1012−23 doi: 10.1016/j.molp.2021.04.012
CrossRef Google Scholar
|
[192]
|
Wang Q, Nian J, Xie X, Yu H, Zhang J, et al. 2018. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nature Communications 9:735 doi: 10.1038/s41467-017-02781-w
CrossRef Google Scholar
|
[193]
|
Fang J, Zhang F, Wang H, Wang W, Zhao F, et al. 2019. Ef-cd locus shortens rice maturity duration without yield penalty. Proceedings of the National Academy of Sciences of the United States of America 116:18717−22 doi: 10.1073/pnas.1815030116
CrossRef Google Scholar
|
[194]
|
Yu J, Zhen X, Li X, Li N, Xu F. 2019. Increased Autophagy of Rice Can Increase Yield and Nitrogen Use Efficiency (NUE). Frontiers in Plant Science 10:584 doi: 10.3389/fpls.2019.00584
CrossRef Google Scholar
|
[195]
|
Hou M, Luo F, Wu D, Zhang X, Lou M, et al. 2021. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. New Phytologist 229:935−49 doi: 10.1111/nph.16901
CrossRef Google Scholar
|
[196]
|
Yu J, Xuan W, Tian Y, Fan L, Sun J, et al. 2021. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnology Journal 19:167−76 doi: 10.1111/pbi.13450
CrossRef Google Scholar
|
[197]
|
Wu J, Zhang ZS, Xia JQ, Alfatih A, Song Y, et al. 2021. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnology Journal 19:448−61 doi: 10.1111/pbi.13475
CrossRef Google Scholar
|
[198]
|
Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, et al. 2019. Nitrate–NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nature Plants 5:401−13 doi: 10.1038/s41477-019-0384-1
CrossRef Google Scholar
|
[199]
|
Alfatih A, Wu J, Zhang ZS, Xia JQ, Jan SU, et al. 2020. Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency. Journal of Experimental Botany 71:6032−42 doi: 10.1093/jxb/eraa292
CrossRef Google Scholar
|
[200]
|
Wang S, Yang Y, Guo M, Zhong C, Yan C, Sun S. 2020. Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system. The Crop Journal 8:457−64 doi: 10.1016/j.cj.2020.02.005
CrossRef Google Scholar
|
[201]
|
Wang J, Wu B, Lu K, Wei Q, Qian J, et al. 2019. The Amino Acid Permease 5 (OsAAP5) Regulates Tiller Number and Grain Yield in Rice. Plant Physiology 180:1031−45 doi: 10.1104/pp.19.00034
CrossRef Google Scholar
|
[202]
|
Lu K, Wu B, Wang J, Zhu W, Nie H, et al. 2018. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnology Journal 16:1710−22 doi: 10.1111/pbi.12907
CrossRef Google Scholar
|
[203]
|
Ji Y, Huang W, Wu B, Fang Z, Wang X. 2020. The amino acid transporter AAP1 mediates growth and grain yield by regulating neutral amino acid uptake and reallocation in Oryza sativa. Journal of Experimental Botany 71:4763−77 doi: 10.1093/jxb/eraa256
CrossRef Google Scholar
|
[204]
|
Ranathunge K, El-kereamy A, Gidda S, Bi YM, Rothstein SJ. 2014. AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. Journal of Experimental Botany 65:965−79 doi: 10.1093/jxb/ert458
CrossRef Google Scholar
|
[205]
|
Suenaga A, Moriya K, Sonoda Y, Ikeda A, von Wirén N, et al. 2003. Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant & Cell Physiology 44:206−11 doi: 10.1093/pcp/pcg017
CrossRef Google Scholar
|
[206]
|
Liu X, Tian Y, Chi W, Zhang H, Yu J, et al. 2022. Alternative splicing of OsGS1;1 affects nitrogen-use efficiency, grain development, and amylose content in rice. The Plant Journal 110:1751−62 doi: 10.1111/tpj.15768
CrossRef Google Scholar
|
[207]
|
Lal SK, Mehta S, Raju D, Achary VMM, Venkatapuram AK, et al. 2023. Concurrent overexpression of rice GS1;1 and GS2 genes to enhance the nitrogen use efficiency (NUE) in transgenic rice. Journal of Plant Growth Regulation 42:6699−720 doi: 10.1007/s00344-023-10988-z
CrossRef Google Scholar
|
[208]
|
Lee S, Marmagne A, Park J, Fabien C, Yim Y, et al. 2020. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. The Plant Journal 103:7−20 doi: 10.1111/tpj.14794
CrossRef Google Scholar
|
[209]
|
Lee S, Park JH, Lee J, Shin D, Marmagne A, et al. 2020. OsASN1 overexpression in rice increases grain protein content and yield under nitrogen-limiting conditions. Plant & Cell Physiology 61:1309−20 doi: 10.1093/pcp/pcaa060
CrossRef Google Scholar
|
[210]
|
Wu j, Zhang Z, Zhang Q, Han X, Gu X, Lu T. 2015. The molecular cloning and clarification of a photorespiratory mutant, oscdm1, using enhancer trapping. Frontiers in Genetics 6:226 doi: 10.3389/fgene.2015.00226
CrossRef Google Scholar
|
[211]
|
Bi Y-M, Kant S, Clark J, Gidda S, Ming F, et al. 2009. Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant, Cell & Environment 32:1749−60 doi: 10.1111/j.1365-3040.2009.02032.x
CrossRef Google Scholar
|
[212]
|
Tang Z, Fan X, Li Q, Feng H, Miller AJ, et al. 2012. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiology 160:2052−63 doi: 10.1104/pp.112.204461
CrossRef Google Scholar
|
[213]
|
Chen J, Fan X, Qian K, Zhang Y, Song M, et al. 2017. pOsNAR2.1: OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. Plant Biotechnology Journal 15:1273−83 doi: 10.1111/pbi.12714
CrossRef Google Scholar
|
[214]
|
Yan M, Fan X, Feng H, Miller AJ, Shen Q, et al. 2011. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant, Cell & Environment 34:1360−72 doi: 10.1111/j.1365-3040.2011.02335.x
CrossRef Google Scholar
|
[215]
|
Wang W, Hu B, Yuan D, Liu Y, Che R, et al. 2018. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. The Plant Cell 30:638−51 doi: 10.1105/tpc.17.00809
CrossRef Google Scholar
|
[216]
|
Zhang S, Zhu L, Shen C, Ji Z, Zhang H, et al. 2021. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. The Plant Cell 33:566−80 doi: 10.1093/plcell/koaa037
CrossRef Google Scholar
|
[217]
|
Xu J, Shang L, Wang J, Chen M, Fu X, et al. 2021. The SEEDLING BIOMASS 1 allele from indica rice enhances yield performance under low-nitrogen environments. Plant Biotechnology Journal 19:1681−83 doi: 10.1111/pbi.13642
CrossRef Google Scholar
|
[218]
|
Yoon DK, Ishiyama K, Suganami M, Tazoe Y, Watanabe M, et al. 2020. Transgenic rice overproducing Rubisco exhibits increased yields with improved nitrogen-use efficiency in an experimental paddy field. Nature Food 1:134−39 doi: 10.1038/s43016-020-0033-x
CrossRef Google Scholar
|
[219]
|
Zhang M, Wang Y, Chen X, Xu F, Ding M, et al. 2021. Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis. Nature Communications 12:735 doi: 10.1038/s41467-021-20964-4
CrossRef Google Scholar
|
[220]
|
Fang Z, Bai G, Huang W, Wang Z, Wang X, et al. 2017. The rice peptide transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield. Frontiers in Plant Science 8:1338 doi: 10.3389/fpls.2017.01338
CrossRef Google Scholar
|
[221]
|
Liu Q, Han R, Wu K, Zhang J, Ye Y, et al. 2018. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nature Communications 9:852 doi: 10.1038/s41467-018-03047-9
CrossRef Google Scholar
|
[222]
|
Sun H, Qian Q, Wu K, Luo J, Wang S, et al. 2014. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics 46:652−56 doi: 10.1038/ng.2958
CrossRef Google Scholar
|