[1]

Joshee N, Tascan A, Medina-Bolivar F, Parajuli P, Rimando AM, et al. 2013. Scutellaria: Biotechnology, phytochemistry and its potential as a commercial medicinal crop. In Biotechnology for Medicinal Plants, eds. Chandra S, Lata H, Varma A. Heidelberg: Springer Berlin. pp. 69–99. https://doi.org/10.1007/978-3-642-29974-2_3

[2]

Shang X, He X, He X, Li M, Zhang R, et al. 2010. The genus Scutellaria an ethnopharmacological and phytochemical review. Journal of Ethnopharmacology 128:279−313

doi: 10.1016/j.jep.2010.01.006
[3]

Wang L, Chen W, Li M, Zhang F, Chen K, et al. 2020. A review of the ethnopharmacology, phytochemistry, pharmacology, and quality control of Scutellaria barbata D. Don. Journal of Ethnopharmacology 254:112260

doi: 10.1016/j.jep.2019.112260
[4]

Wang ZL, Wang S, Kuang Y, Hu ZM, Qiao X, et al. 2018. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharmaceutical Biology 56:465−84

doi: 10.1080/13880209.2018.1492620
[5]

Min LW. 2009. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treatment Reviews 35:57−68

doi: 10.1016/j.ctrv.2008.09.005
[6]

Zhao Q, Zhang Y, Wang G, Hill L, Weng JK, et al. 2016. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis. Science Advances 2:e1501780

doi: 10.1126/sciadv.1501780
[7]

Zhao Q, Yang J, Cui MY, Liu J, Fang Y, et al. 2019. The reference genome sequence of Scutellaria baicalensis provides insights into the evolution of wogonin biosynthesis. Molecular Plant 12:935−50

doi: 10.1016/j.molp.2019.04.002
[8]

Liu H, Ye F, Sun Q, Liang H, Li C, et al. 2021. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. Journal of Enzyme Inhibition and Medicinal Chemistry 36:497−503

doi: 10.1080/14756366.2021.1873977
[9]

Zhao Q, Cui MY, Levsh O, Yang D, Liu J, et al. 2018. Two CYP82D Enzymes Function as Flavone Hydroxylases in the Biosynthesis of Root-Specific 4′-Deoxyflavones in Scutellaria baicalensis. Molecular Plant 11:135−48

doi: 10.1016/j.molp.2017.08.009
[10]

Fang Y, Liu J, Zheng M, Zhu S, Pei T, et al. 2022. SbMYB3 transcription factor promotes root-specific flavone biosynthesis in Scutellaria baicalensis. Horticulture Research 10:uhac266

doi: 10.1093/hr/uhac266
[11]

Miyaichi Y, Imoto Y, Tomimori T, Lin CC. 1987. Studies on the constituents of Scutellaria Species. IX. on the flavonoid constituents of the root of Scutellaria indica L. Chemical & Pharmaceutical Bulletin 35:3720−25

doi: 10.1248/cpb.35.3720
[12]

Li Y, Ooi LSM, Wang H, But PPH, Ooi VEC. 2004. Antiviral activities of medicinal herbs traditionally used in southern mainland China. Phytotherapy Research 18:718−22

doi: 10.1002/ptr.1518
[13]

Kim SW, Cuong TD, Hung TM, Ryoo S, Lee JH, et al. 2013. Arginase II inhibitory activity of flavonoid compounds from Scutellaria indica. Archives of Pharmacal Research 36:922−26

doi: 10.1007/s12272-013-0125-3
[14]

Huang ST, Chen Y, Chang WC, Chen HF, Lai HC, et al. 2021. Scutellaria barbata D. Don Inhibits the Main Proteases (Mpro and TMPRSS2) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. Viruses 13:826

doi: 10.3390/v13050826
[15]

Dai ZJ, Lu WF, Gao J, Kang HF, Ma YG, et al. 2013. Anti-angiogenic effect of the total flavonoids in Scutellaria barbata D. Don. BMC Complementary and Alternative Medicine 13:150

doi: 10.1186/1472-6882-13-150
[16]

Xu Z, Gao R, Pu X, Xu R, Wang J, et al. 2020. Comparative genome analysis of Scutellaria baicalensis and Scutellaria barbata reveals the evolution of active flavonoid biosynthesis. Genomics, Proteomics & Bioinformatics 18:230−40

doi: 10.1016/j.gpb.2020.06.002
[17]

Li J, Wang H, Shi X, Zhao L, Lv T, et al. 2019. Anti-proliferative and anti-migratory effects of Scutellaria strigillosa Hemsley extracts against vascular smooth muscle cells. Journal of Ethnopharmacology 235:155−63

doi: 10.1016/j.jep.2019.02.016
[18]

Gao C, Zhou Y, Jiang Z, Zhao Y, Zhang D, et al. 2017. Cytotoxic and chemosensitization effects of Scutellarin from traditional Chinese herb Scutellaria altissima L. in human prostate cancer cells. Oncology Reports 38:1491−99

doi: 10.3892/or.2017.5850
[19]

Grzegorczyk-Karolak I, Kuźma Ł, Wysokińska H. 2017. The influence of cytokinins on proliferation and polyphenol accumulation in shoot cultures of Scutellaria altissima L. Phytochemistry Letters 20:449−55

doi: 10.1016/j.phytol.2016.12.029
[20]

He C, Peng Y, Xiao W, Xiao P. 2012. The ethnopharmacological investigation of Chinese Scutellaria plants. Modern Chinese Medicine 14:16−20

doi: 10.13313/j.issn.1673-4890.2012.01.016
[21]

Miyaichi Y, Morimoto T, Yaguchi K, Kizu H. 2006. Studies on the constituents of Scutellaria species (XXI): constituents of the leaves of Scutellaria strigillosa Hemsley. Journal of Natural Medicines 60:157−58

doi: 10.1007/s11418-005-0023-1
[22]

Kovács G, Kuzovkina IN, Szoke É, Kursinszki L. 2004. HPLC Determination of Flavonoids in Hairy-Root Cultures of Scutellaria baicalensis Georgi. Chromatographia 60:S81−S85

[23]

Gharari Z, Bagheri K, Danafar H, Sharafi A. 2020. Enhanced flavonoid production in hairy root cultures of Scutellaria bornmuelleri by elicitor induced over-expression of MYB7 and FNSII2 genes. Plant Physiology and Biochemistry 148:35−44

doi: 10.1016/j.plaphy.2020.01.002
[24]

Wilczańska-Barska A, Królicka A, Głód D, Majdan M, Kawiak A, et al. 2012. Enhanced accumulation of secondary metabolites in hairy root cultures of Scutellaria lateriflora following elicitation. Biotechnology Letters 34:1757−63

doi: 10.1007/s10529-012-0963-y
[25]

Stepanova AY, Solov'eva AI, Malunova MV, Salamaikina SA, Panov YM, et al. 2021. Hairy Roots of Scutellaria spp. (Lamiaceae) as Promising Producers of Antiviral Flavones. Molecules 26:3927

doi: 10.3390/molecules26133927
[26]

Fang Y, Hou Z, Zhang X, Yang D, Liang Z. 2018. Diverse specialized metabolism and their responses to lactalbumin hydrolysate in hairy root cultures of Salvia miltiorrhiza Bunge and Salvia castanea Diels f. tomentosa Stib. Biochemical Engineering Journal 131:58−69

doi: 10.1016/j.bej.2017.12.007
[27]

Pei T, Yan M, Li T, Li X, Yin Y, et al. 2022. Characterization of UDP-glycosyltransferase family members reveals how major flavonoid glycoside accumulates in the roots of Scutellaria baicalensis. BMC Genomics 23:169

doi: 10.1186/s12864-022-08391-1