[1]

Lightbourn GJ, Griesbach RJ, Novotny JA, Clevidence BA, Rao DD, et al. 2008. Effects of anthocyanin and carotenoid combinations on foliage and immature fruit color of Capsicum annuum L. Journal of Heredity 99:105−11

doi: 10.1093/jhered/esm108
[2]

Sass-Kiss A, Kiss J, Milotay P, Kerek MM, Toth-Markus M. 2005. Differences in anthocyanin and carotenoid content of fruits and vegetables. Food Research International 38:1023−29

doi: 10.1016/j.foodres.2005.03.014
[3]

He J, Giusti MM. 2010. Anthocyanins: natural colorants with health-promoting properties. Annual Review of Food Science and Technology 1:163−87

doi: 10.1146/annurev.food.080708.100754
[4]

Tena N, Martín J, Asuero AG. 2020. State of the art of anthocyanins: antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 9:451

doi: 10.3390/antiox9050451
[5]

Rahim A, Busatto N, Trainotti L. 2014. Regulation of anthocyanin biosynthesis in peach fruits. Planta 240:913−29

doi: 10.1007/s00425-014-2078-2
[6]

Cheng J, Liao L, Zhou H, Gu C, Wang L, et al. 2015. A small indel mutation in an anthocyanin transporter causes variegated colouration of peach flowers. Journal of Experimental Botany 66:7227−39

doi: 10.1093/jxb/erv419
[7]

Zhao Y, Min T, Chen M, Wang H, Zhu C, et al. 2020. The photomorphogenic transcription factor PpHY5 regulates anthocyanin accumulation in response to UVA and UVB irradiation. Frontiers in Plant Science 11:603178

doi: 10.3389/fpls.2020.603178
[8]

Zhao Y, Dong W, Zhu Y, Allan AC, Lin-Wang K, et al. 2020. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnology Journal 18:1284−95

doi: 10.1111/pbi.13291
[9]

Lu Z, Cao H, Pan L, Niu L, Wei B, et al. 2021. Two loss-of-function alleles of the glutathione S-transferase (GST) gene cause anthocyanin deficiency in flower and fruit skin of peach (Prunus persica). The Plant Journal 107:1320−31

doi: 10.1111/tpj.15312
[10]

Sylvia C, Sun J, Zhang Y, Ntini C, Ogutu C, et al. 2023. Genome-wide analysis of ATP binding cassette (ABC) transporters in Peach (Prunus persica) and identification of a gene PpABCC1 involved in anthocyanin accumulation. International Journal of Molecular Sciences 24:1931

doi: 10.3390/ijms24031931
[11]

Petroni K, Tonelli C. 2011. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science 181:219−29

doi: 10.1016/j.plantsci.2011.05.009
[12]

Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science 20:176−85

doi: 10.1016/j.tplants.2014.12.001
[13]

Zhou H, Liao L, Xu S, Ren F, Zhao J, et al. 2018. Two amino acid changes in the R3 repeat cause functional divergence of two clustered MYB10 genes in peach. Plant Molecular Biology 98:169−83

doi: 10.1007/s11103-018-0773-2
[14]

Zhou H, Lin-Wang K, Wang H, Gu C, Dare AP, et al. 2015. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal 82:105−21

doi: 10.1111/tpj.12792
[15]

Zhao L, Sun J, Cai Y, Yang Q, Zhang Y, et al. 2022. PpHYH is responsible for light-induced anthocyanin accumulation in fruit peel of Prunus persica. Tree Physiology 42:1662−77

doi: 10.1093/treephys/tpac025
[16]

Zhao L, Zhang Y, Sun J, Yang Q, Cai Y, et al. 2023. PpHY5 is involved in anthocyanin coloration in the peach flesh surrounding the stone. The Plant Journal 114:951−64

doi: 10.1111/tpj.16189
[17]

Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, et al. 2006. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology 142:1216−32

doi: 10.1104/pp.106.088104
[18]

Bai S, Tao R, Tang Y, Yin L, Ma Y, et al. 2019. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnology Journal 17:1985−97

doi: 10.1111/pbi.13114
[19]

Li Y, Xu P, Chen G, Wu J, Liu Z, et al. 2020. FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5-bHLH9 transcription complex in strawberry fruits. Plant and Cell Physiology 61:826−37

doi: 10.1093/pcp/pcaa010
[20]

Ni J, Bai S, Zhao Y, Qian M, Tao R, et al. 2019. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in 'Red Zaosu' pear fruits by interacting with MYB114. Plant Molecular Biology 99:67−78

doi: 10.1007/s11103-018-0802-1
[21]

Tao R, Bai S, Ni J, Yang Q, Zhao Y, et al. 2018. The blue light signal transduction pathway is involved in anthocyanin accumulation in 'Red Zaosu' pear. Planta 248:37−48

doi: 10.1007/s00425-018-2877-y
[22]

Hu J, Fang H, Wang J, Yue X, Su M, et al. 2020. Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin synthesis in apple. Plant Science 292:110377

doi: 10.1016/j.plantsci.2019.110377
[23]

An J, Wang X, Zhang X, Bi S, You C, et al. 2019. MdBBX22 regulates UV-B-induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation. Plant Biotechnology Journal 17:2231−33

doi: 10.1111/pbi.13196
[24]

Zhou D, Li R, Zhang H, Chen S, Tu K. 2020. Hot air and UV-C treatments promote anthocyanin accumulation in peach fruit through their regulations of sugars and organic acids. Food Chemistry 309:125726

doi: 10.1016/j.foodchem.2019.125726
[25]

Tong Z, Gao Z, Wang F, Zhou J, Zhang Z. 2009. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology 10:71

doi: 10.1186/1471-2199-10-71
[26]

Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, et al. 2013. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics 45:487−94

doi: 10.1038/ng.2586
[27]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[28]

Shen S, Park JW, Lu ZX, Lin L, Henry MD, et al. 2014. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proceedings of the National Academy of Sciencess of the United States of America 111:E5593−E5601

doi: 10.1073/pnas.1419161111
[29]

Jin S, Kim SY, Susila H, Nasim Z, Youn G, et al. 2022. FLOWERING LOCUS M isoforms differentially affect the subcellular localization and stability of SHORT VEGETATIVE PHASE to regulate temperature-responsive flowering in Arabidopsis. Molecular Plant 15:1696−709

doi: 10.1016/j.molp.2022.08.007
[30]

Berland H, Albert NW, Stavland A, Jordheim M, McGhie TK, et al. 2019. Auronidins are a previously unreported class of flavonoid pigments that challenges when anthocyanin biosynthesis evolved in plants. Proceedings of the National Academy of Sciences of the United States of America 116:20232−39

doi: 10.1073/pnas.1912741116
[31]

Meyer P, Van de Poel B, De Coninck B. 2021. UV-B light and its application potential to reduce disease and pest incidence in crops. Horticulture Research 8:194

doi: 10.1038/s41438-021-00629-5
[32]

Guo J, Wang MH. 2010. Ultraviolet A-specific induction of anthocyanin biosynthesis and PAL expression in tomato (Solanum lycopersicum L.). Plant Growth Regulation 62:1−8

doi: 10.1007/s10725-010-9472-y
[33]

Kim MJ, Kim P, Chen Y, Chen B, Yang J, et al. 2021. Blue and UV-B light synergistically induce anthocyanin accumulation by co-activating nitrate reductase gene expression in Anthocyanin fruit (Aft) tomato. Plant Biology 23:210−20

doi: 10.1111/plb.13141
[34]

Xu F, Cao S, Shi L, Chen W, Su X, et al. 2014. Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. Journal of Agricultural and Food Chemistry 62:4778−83

doi: 10.1021/jf501120u
[35]

Li T, Yamane H, Tao R. 2021. Preharvest long-term exposure to UV-B radiation promotes fruit ripening and modifies stage-specific anthocyanin metabolism in highbush blueberry. Horticulture Research 8:67

doi: 10.1038/s41438-021-00503-4
[36]

Fang H, Dong Y, Yue X, Chen X, He N, et al. 2019. MdCOL4 interaction mediates crosstalk between UV-B and high temperature to control fruit coloration in apple. Plant and Cell Physiology 60:1055−66

doi: 10.1093/pcp/pcz023
[37]

Fang H, Dong Y, Yue X, Hu J, Jiang S, et al. 2019. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant, Cell & Environment 42:2090−104

doi: 10.1111/pce.13552
[38]

Xing Y, Sun W, Sun Y, Li J, Zhang J, et al. 2023. MPK6-mediated HY5 phosphorylation regulates light-induced anthocyanin accumulation in apple fruit. Plant Biotechnology Journal 21:283−301

doi: 10.1111/pbi.13941
[39]

Liu C, Chi C, Jin L, Zhu J, Yu J, et al. 2018. The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. Plant, Cell & Environment 41:1762−75

doi: 10.1111/pce.13171
[40]

Tsuchida-Mayama T, Sakai T, Hanada A, Uehara Y, Asami T, et al. 2010. Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. The Plant Journal 62:653−62

doi: 10.1111/j.1365-313X.2010.04180.x
[41]

Kang C, Lian H, Wang F, Huang J, Yang H. 2009. Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. The Plant Cell 21:2624−41

doi: 10.1105/tpc.109.069765
[42]

Gangappa SN, Botto JF. 2016. The multifaceted roles of HY5 in plant growth and development. Molecular Plant 9:1353−65

doi: 10.1016/j.molp.2016.07.002
[43]

Shin DH, Choi M, Kim K, Bang G, Cho M, et al. 2013. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Letters 587:1543−47

doi: 10.1016/j.febslet.2013.03.037
[44]

Link S, Grund SE, Diederichs S. 2016. Alternative splicing affects the subcellular localization of Drosha. Nucleic Acids Research 44:5330−43

doi: 10.1093/nar/gkw400
[45]

Sanyal SK, Kanwar P, Samtani H, Kaur K, Jha SK, et al. 2017. Alternative splicing of CIPK3 results in distinct target selection to propagate ABA signaling in Arabidopsis. Frontiers in Plant Science 8:1924

doi: 10.3389/fpls.2017.01924
[46]

Wang T, Wang X, Wang H, Yu C, Xiao C, et al. 2023. Arabidopsis SRPKII family proteins regulate flowering via phosphorylation of SR proteins and effects on gene expression and alternative splicing. New Phytologist 238:1889−907

doi: 10.1111/nph.18895
[47]

Kriechbaumer V, Wang P, Hawes C, Abell BM. 2012. Alternative splicing of the auxin biosynthesis gene YUCCA4 determines its subcellular compartmentation. The Plant Journal 70:292−302

doi: 10.1111/j.1365-313X.2011.04866.x
[48]

Liu Y, Zhang X, Liu X, Zheng P, Su L, et al. 2022. Phytochrome interacting factor MdPIF7 modulates anthocyanin biosynthesis and hypocotyl growth in apple. Plant Physiology 188:2342−63

doi: 10.1093/plphys/kiab605
[49]

Liu Z, Zhang Y, Wang J, Li P, Zhao C, et al. 2015. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. Plant Science 238:64−72

doi: 10.1016/j.plantsci.2015.06.001
[50]

Li T, Jia K, Lian H, Yang X, Li L, et al. 2014. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochemical and Biophysical Research Communications 454:78−83

doi: 10.1016/j.bbrc.2014.10.059
[51]

Kadomura-Ishikawa Y, Miyawaki K, Noji S, Takahashi A. 2013. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits. Journal of Plant Research 126:847−57

doi: 10.1007/s10265-013-0582-2
[52]

Ohgishi M, Saji K, Okada K, Sakai T. 2004. Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 101:2223−28

doi: 10.1073/pnas.0305984101
[53]

Ahmad M, Lin C, Cashmore AR. 1995. Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. The Plant Journal 8:653−58

doi: 10.1046/j.1365-313X.1995.08050653.x
[54]

Tognacca RS, Rodríguez FS, Aballay FE, Cartagena CM, Servi L, et al. 2023. Alternative splicing in plants: current knowledge and future directions for assessing the biological relevance of splice variants. Journal of Experimental Botany 74:2251−72

doi: 10.1093/jxb/erac431
[55]

John S, Olas JJ, Mueller-Roeber B. 2021. Regulation of alternative splicing in response to temperature variation in plants. Journal of Experimental Botany 72:6150−63

doi: 10.1093/jxb/erab232
[56]

Godoy Herz MA, Kubaczka MG, Brzyżek G, Servi L, Krzyszton M, et al. 2019. Light regulates plant alternative splicing through the control of transcriptional elongation. Molecular Cell 73:1066−1074.E3

doi: 10.1016/j.molcel.2018.12.005
[57]

Laloum T, Martín G, Duque P. 2018. Alternative splicing control of abiotic stress responses. Trends in Plant Science 23:140−50

doi: 10.1016/j.tplants.2017.09.019
[58]

Shang X, Cao Y, Ma L. 2017. Alternative splicing in plant genes: a means of regulating the environmental fitness of plants. International Journal of Molecular Sciences 18:432

doi: 10.3390/ijms18020432
[59]

Shikata H, Shibata M, Ushijima T, Nakashima M, Kong SG, et al. 2012. The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction. The Plant Journal 70:727−38

doi: 10.1111/j.1365-313X.2012.04937.x
[60]

Shikata H, Hanada K, Ushijima T, Nakashima M, Suzuki Y, et al. 2014. Phytochrome controls alternative splicing to mediate light responses in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111:18781−86

doi: 10.1073/pnas.1407147112
[61]

Xin R, Zhu L, Salomé PA, Mancini E, Marshall CM, et al. 2017. SPF45-related splicing factor for phytochrome signaling promotes photomorphogenesis by regulating pre-mRNA splicing in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 114:E7018−E7027

doi: 10.1073/pnas.1706379114
[62]

Riegler S, Servi L, Scarpin MR, Godoy Herz MA, Kubaczka MG, et al. 2021. Light regulates alternative splicing outcomes via the TOR kinase pathway. Cell Reports 36:109676

doi: 10.1016/j.celrep.2021.109676