[1] |
Bresso EG, Chorostecki U, Rodriguez RE, Palatnik JF, Schommer C. 2018. Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development. Plant Physiology 176:1694−708 doi: 10.1104/pp.17.00823 |
[2] |
Moosavi-Nezhad M, Alibeigi B, Estaji A, Gruda NS, Aliniaeifard S. 2022. Growth, biomass partitioning, and photosynthetic performance of Chrysanthemum cuttings in response to different light spectra. Plants 11:3337 doi: 10.3390/plants11233337 |
[3] |
Cubas P, Lauter N, Doebley J, Coen E. 1999. The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal 18:215−22 doi: 10.1046/j.1365-313X.1999.00444.x |
[4] |
Doebley J, Stec A, Hubbard L. 1997. The evolution of apical dominance in maize. Nature 386:485−88 doi: 10.1038/386485a0 |
[5] |
Luo D, Carpenter R, Vincent C, Copsey L, Coen E. 1996. Origin of floral asymmetry in Antirrhinum. Nature 383:794−99 doi: 10.1038/383794a0 |
[6] |
Kosugi S, Ohashi Y. 1997. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. The Plant Cell 9:1607−19 doi: 10.1105/tpc.9.9.1607 |
[7] |
Martín-Trillo M, Cubas P. 2010. TCP genes: a family snapshot ten years later. Trends in Plant Science 15:31−9 doi: 10.1016/j.tplants.2009.11.003 |
[8] |
Wang J, Wang H, Cao Y, Kan S, Liu Y. 2022. Comprehensive evolutionary analysis of the TCP gene family: further insights for its origin, expansion, and diversification. Frontiers in Plant Science 13:994567 doi: 10.3389/fpls.2022.994567 |
[9] |
Song C, Shan W, Yang Y, Tan X, Fan Z, et al. 2018. Heterodimerization of MaTCP proteins modulates the transcription of MaXTH10/11 genes during banana fruit ripening. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1861:613−22 doi: 10.1016/j.bbagrm.2018.06.005 |
[10] |
Wang M, Le Moigne MA, Bertheloot J, Crespel L, Perez-Garcia MD, et al. 2019. BRANCHED1:a key hub of shoot branching. Frontiers in Plant Science 10:76 doi: 10.3389/fpls.2019.00076 |
[11] |
Zhao Y, Pfannebecker K, Dommes AB, Hidalgo O, Becker A, et al. 2018. Evolutionary diversification of CYC/TB1-like TCP homologs and their recruitment for the control of branching and floral morphology in Papaveraceae (basal eudicots). New Phytologist 220:317−31 doi: 10.1111/nph.15289 |
[12] |
Hu D, Wang N, Wang D, Cheng L, Wang Y, et al. 2020. A basic/helix-loop-helix transcription factor controls leaf shape by regulating auxin signaling in apple. New Phytologist 228:1897−913 doi: 10.1111/nph.16828 |
[13] |
Wang L, Wang B, Yu H, Guo H, Lin T, et al. 2020. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature 583:277−81 doi: 10.1038/s41586-020-2382-x |
[14] |
Almeida DM, Gregorio GB, Oliveira MM, Saibo NJM. 2017. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. Plant Molecular Biology 93:61−77 doi: 10.1007/s11103-016-0547-7 |
[15] |
Danisman S, van Dijk ADJ, Bimbo A, van der Wal F, Hennig L, et al. 2013. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. Journal of Experimental Botany 64:5673−85 doi: 10.1093/jxb/ert337 |
[16] |
Yao X, Ma H, Wang J, Zhang D. 2007. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. Journal of Integrative Plant Biology 49:885−97 doi: 10.1111/j.1744-7909.2007.00509.x |
[17] |
Wang Y, Zhang N, Li T, Yang J, Zhu X, et al. 2019. Genome-wide identification and expression analysis of StTCP transcription factors of potato (Solanum tuberosum L.). Computational Biology and Chemistry 78:53−63 doi: 10.1016/j.compbiolchem.2018.11.009 |
[18] |
Ding S, Cai Z, Du H, Wang H. 2019. Genome-wide analysis of TCP family genes in Zea mays L. identified a role for ZmTCP42 in drought tolerance. International Journal of Molecular Sciences 20:2762 doi: 10.3390/ijms20112762 |
[19] |
Aguilar-Martínez JA, Sinha N. 2013. Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Frontiers in Plant Science 4:406 doi: 10.3389/fpls.2013.00406 |
[20] |
Steiner E, Efroni I, Gopalraj M, Saathoff K, Tseng TS, et al. 2012. The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. The Plant Cell 24:96−108 doi: 10.1105/tpc.111.093518 |
[21] |
Kieffer M, Master V, Waites R, Davies B. 2011. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. The Plant Journal 68:147−58 doi: 10.1111/j.1365-313X.2011.04674.x |
[22] |
Vadde BVL, Challa KR, Nath U. 2018. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana. The Plant Journal 93:259−69 doi: 10.1111/tpj.13772 |
[23] |
Yu H, Zhang L, Wang W, Tian P, Wang W, et al. 2021. TCP5 controls leaf margin development by regulating KNOX and BEL-like transcription factors in Arabidopsis. Journal of Experimental Botany 72:1809−21 doi: 10.1093/jxb/eraa569 |
[24] |
Crawford BCW, Nath U, Carpenter R, Coen ES. 2004. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiology 135:244−53 doi: 10.1104/pp.103.036368 |
[25] |
Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, et al. 2013. A role for APETALA1/FRUITFULL transcription factors in tomato leaf development. The Plant Cell 25:2070−83 doi: 10.1105/tpc.113.113035 |
[26] |
Zhou D, Miao Y, Dong B, Yang L, Zhao H. 2021. Cloning of OfTCPs Gene from sweet Osmanthus (Osmanthus fragrans) and expression analysis during floral bud differentiation. Journal of Agricultural Biotechnology 29:1506−17 doi: 10.3969/j.issn.1674-7968.2021.08.007 |
[27] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009 |
[28] |
Guo X, Zhang L, Dong G, Xu Z, Li G, et al. 2019. A novel cold-regulated protein isolated from Saussurea involucrata confers cold and drought tolerance in transgenic tobacco (Nicotiana tabacum). Plant Science 289:110246 doi: 10.1016/j.plantsci.2019.110246 |
[29] |
Zhu S, Fang Q, Wang Y, Zhong S, Dong B, et al. 2022. OfSPL11 gene from Osmanthus fragrans promotes plant growth and oxidative damage reduction to enhance salt tolerance in Arabidopsis. Horticulturae 8:412 doi: 10.3390/horticulturae8050412 |
[30] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |
[31] |
Cheng H, Zhou M, Si Y, Li W, Wang L, et al. 2023. Transcriptome analysis of ethylene response in Chrysanthemum moriflolium Ramat. with an emphasis on flowering delay. Horticulturae 9:428 doi: 10.3390/horticulturae9040428 |
[32] |
Zheng Z, Chen P, Cao S, Zhong S, Wang Y, et al. 2022. EARLY FLOWERING3 gene confers earlier flowering and enhancement of salt tolerance in woody plant Osmanthus fragrans. Forests 13:1786 doi: 10.3390/f13111786 |
[33] |
Sparkes IA, Runions J, Kearns A, Hawes C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols 1:2019−25 doi: 10.1038/nprot.2006.286 |
[34] |
Barkoulas M, Galinha C, Grigg SP, Tsiantis M. 2007. From genes to shape: regulatory interactions in leaf development. Current Opinion in Plant Biology 10:660−66 doi: 10.1016/j.pbi.2007.07.012 |
[35] |
Wang Q, Gao G, Chen X, Liu X, Dong B, et al. 2022. Genetic studies on continuous flowering in woody plant Osmanthus fragrans. Frontiers in Plant Science 13:1049479 doi: 10.3389/fpls.2022.1049479 |
[36] |
Toledo-Ortiz G, Huq E, Quail PH. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell 15:1749−70 doi: 10.1105/tpc.013839 |
[37] |
Hao Y, Zong X, Ren P, Qian Y, Fu A. 2021. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. International Journal of Molecular Sciences 22:7152 doi: 10.3390/ijms22137152 |
[38] |
Romanowski A, Furniss JJ, Hussain E, Halliday KJ. 2021. Phytochrome regulates cellular response plasticity and the basic molecular machinery of leaf development. Plant Physiology 186:1220−39 doi: 10.1093/plphys/kiab112 |
[39] |
Chitwood DH, Headland LR, Filiault DL, Kumar R, Jiménez-Gómez JM, et al. 2012. Native environment modulates leaf size and response to simulated foliar shade across wild tomato species. PLoS ONE 7:e29570 doi: 10.1371/journal.pone.0029570 |
[40] |
Balsemão-Pires E, Andrade LR, Sachetto-Martins G. 2013. Functional study of TCP23 in Arabidopsis thaliana during plant development. Plant Physiology and Biochemistry 67:120−25 doi: 10.1016/j.plaphy.2013.03.009 |
[41] |
Wang Y, Yu Y, Chen Q, Bai G, Gao W, et al. 2019. Heterologous expression of GbTCP4, a class II TCP transcription factor, regulates trichome formation and root hair development in Arabidopsis. Genes 10:726 doi: 10.3390/genes10090726 |
[42] |
Navarro-Cartagena S, Micol JL. 2023. Is auxin enough? Cytokinins and margin patterning in simple leaves Trends in Plant Science 28:54−73 doi: 10.1016/j.tplants.2022.08.019 |
[43] |
Wang H, Kong F, Zhou C. 2021. From genes to networks: the genetic control of leaf development. Journal of Integrative Plant Biology 63:1181−96 doi: 10.1111/jipb.13084 |
[44] |
Wang J, Guan Y, Ding L, Li P, Zhao W, et al. 2019. The CmTCP20 gene regulates petal elongation growth in Chrysanthemum morifolium. Plant Science 280:248−57 doi: 10.1016/j.plantsci.2018.12.008 |
[45] |
Scarpella E, Barkoulas M, Tsiantis M. 2010. Control of leaf and vein development by auxin. Cold Spring Harbor Perspectives in Biology 2:a001511 doi: 10.1101/cshperspect.a001511 |
[46] |
Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. 2010. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. The Plant Cell 22:3574−88 doi: 10.1105/tpc.110.075598 |
[47] |
Ferrero LV, Gastaldi V, Ariel FD, Viola IL, Gonzalez DH. 2021. Class I TCP proteins TCP14 and TCP15 are required for elongation and gene expression responses to auxin. Plant Molecular Biology 105:147−59 doi: 10.1007/s11103-020-01075-y |
[48] |
Nicolas M, Cubas P. 2016. TCP factors: new kids on the signaling block. Current Opinion in Plant Biology 33:33−41 doi: 10.1016/j.pbi.2016.05.006 |