[1]
|
Bresso EG, Chorostecki U, Rodriguez RE, Palatnik JF, Schommer C. 2018. Spatial control of gene expression by miR319-regulated TCP transcription factors in leaf development. Plant Physiology 176:1694−708 doi: 10.1104/pp.17.00823
CrossRef Google Scholar
|
[2]
|
Moosavi-Nezhad M, Alibeigi B, Estaji A, Gruda NS, Aliniaeifard S. 2022. Growth, biomass partitioning, and photosynthetic performance of Chrysanthemum cuttings in response to different light spectra. Plants 11:3337 doi: 10.3390/plants11233337
CrossRef Google Scholar
|
[3]
|
Cubas P, Lauter N, Doebley J, Coen E. 1999. The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal 18:215−22 doi: 10.1046/j.1365-313X.1999.00444.x
CrossRef Google Scholar
|
[4]
|
Doebley J, Stec A, Hubbard L. 1997. The evolution of apical dominance in maize. Nature 386:485−88 doi: 10.1038/386485a0
CrossRef Google Scholar
|
[5]
|
Luo D, Carpenter R, Vincent C, Copsey L, Coen E. 1996. Origin of floral asymmetry in Antirrhinum. Nature 383:794−99 doi: 10.1038/383794a0
CrossRef Google Scholar
|
[6]
|
Kosugi S, Ohashi Y. 1997. PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. The Plant Cell 9:1607−19 doi: 10.1105/tpc.9.9.1607
CrossRef Google Scholar
|
[7]
|
Martín-Trillo M, Cubas P. 2010. TCP genes: a family snapshot ten years later. Trends in Plant Science 15:31−9 doi: 10.1016/j.tplants.2009.11.003
CrossRef Google Scholar
|
[8]
|
Wang J, Wang H, Cao Y, Kan S, Liu Y. 2022. Comprehensive evolutionary analysis of the TCP gene family: further insights for its origin, expansion, and diversification. Frontiers in Plant Science 13:994567 doi: 10.3389/fpls.2022.994567
CrossRef Google Scholar
|
[9]
|
Song C, Shan W, Yang Y, Tan X, Fan Z, et al. 2018. Heterodimerization of MaTCP proteins modulates the transcription of MaXTH10/11 genes during banana fruit ripening. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1861:613−22 doi: 10.1016/j.bbagrm.2018.06.005
CrossRef Google Scholar
|
[10]
|
Wang M, Le Moigne MA, Bertheloot J, Crespel L, Perez-Garcia MD, et al. 2019. BRANCHED1:a key hub of shoot branching. Frontiers in Plant Science 10:76 doi: 10.3389/fpls.2019.00076
CrossRef Google Scholar
|
[11]
|
Zhao Y, Pfannebecker K, Dommes AB, Hidalgo O, Becker A, et al. 2018. Evolutionary diversification of CYC/TB1-like TCP homologs and their recruitment for the control of branching and floral morphology in Papaveraceae (basal eudicots). New Phytologist 220:317−31 doi: 10.1111/nph.15289
CrossRef Google Scholar
|
[12]
|
Hu D, Wang N, Wang D, Cheng L, Wang Y, et al. 2020. A basic/helix-loop-helix transcription factor controls leaf shape by regulating auxin signaling in apple. New Phytologist 228:1897−913 doi: 10.1111/nph.16828
CrossRef Google Scholar
|
[13]
|
Wang L, Wang B, Yu H, Guo H, Lin T, et al. 2020. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature 583:277−81 doi: 10.1038/s41586-020-2382-x
CrossRef Google Scholar
|
[14]
|
Almeida DM, Gregorio GB, Oliveira MM, Saibo NJM. 2017. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. Plant Molecular Biology 93:61−77 doi: 10.1007/s11103-016-0547-7
CrossRef Google Scholar
|
[15]
|
Danisman S, van Dijk ADJ, Bimbo A, van der Wal F, Hennig L, et al. 2013. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. Journal of Experimental Botany 64:5673−85 doi: 10.1093/jxb/ert337
CrossRef Google Scholar
|
[16]
|
Yao X, Ma H, Wang J, Zhang D. 2007. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. Journal of Integrative Plant Biology 49:885−97 doi: 10.1111/j.1744-7909.2007.00509.x
CrossRef Google Scholar
|
[17]
|
Wang Y, Zhang N, Li T, Yang J, Zhu X, et al. 2019. Genome-wide identification and expression analysis of StTCP transcription factors of potato (Solanum tuberosum L.). Computational Biology and Chemistry 78:53−63 doi: 10.1016/j.compbiolchem.2018.11.009
CrossRef Google Scholar
|
[18]
|
Ding S, Cai Z, Du H, Wang H. 2019. Genome-wide analysis of TCP family genes in Zea mays L. identified a role for ZmTCP42 in drought tolerance. International Journal of Molecular Sciences 20:2762 doi: 10.3390/ijms20112762
CrossRef Google Scholar
|
[19]
|
Aguilar-Martínez JA, Sinha N. 2013. Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Frontiers in Plant Science 4:406 doi: 10.3389/fpls.2013.00406
CrossRef Google Scholar
|
[20]
|
Steiner E, Efroni I, Gopalraj M, Saathoff K, Tseng TS, et al. 2012. The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. The Plant Cell 24:96−108 doi: 10.1105/tpc.111.093518
CrossRef Google Scholar
|
[21]
|
Kieffer M, Master V, Waites R, Davies B. 2011. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. The Plant Journal 68:147−58 doi: 10.1111/j.1365-313X.2011.04674.x
CrossRef Google Scholar
|
[22]
|
Vadde BVL, Challa KR, Nath U. 2018. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana. The Plant Journal 93:259−69 doi: 10.1111/tpj.13772
CrossRef Google Scholar
|
[23]
|
Yu H, Zhang L, Wang W, Tian P, Wang W, et al. 2021. TCP5 controls leaf margin development by regulating KNOX and BEL-like transcription factors in Arabidopsis. Journal of Experimental Botany 72:1809−21 doi: 10.1093/jxb/eraa569
CrossRef Google Scholar
|
[24]
|
Crawford BCW, Nath U, Carpenter R, Coen ES. 2004. CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiology 135:244−53 doi: 10.1104/pp.103.036368
CrossRef Google Scholar
|
[25]
|
Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, et al. 2013. A role for APETALA1/FRUITFULL transcription factors in tomato leaf development. The Plant Cell 25:2070−83 doi: 10.1105/tpc.113.113035
CrossRef Google Scholar
|
[26]
|
Zhou D, Miao Y, Dong B, Yang L, Zhao H. 2021. Cloning of OfTCPs Gene from sweet Osmanthus (Osmanthus fragrans) and expression analysis during floral bud differentiation. Journal of Agricultural Biotechnology 29:1506−17 doi: 10.3969/j.issn.1674-7968.2021.08.007
CrossRef Google Scholar
|
[27]
|
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009
CrossRef Google Scholar
|
[28]
|
Guo X, Zhang L, Dong G, Xu Z, Li G, et al. 2019. A novel cold-regulated protein isolated from Saussurea involucrata confers cold and drought tolerance in transgenic tobacco (Nicotiana tabacum). Plant Science 289:110246 doi: 10.1016/j.plantsci.2019.110246
CrossRef Google Scholar
|
[29]
|
Zhu S, Fang Q, Wang Y, Zhong S, Dong B, et al. 2022. OfSPL11 gene from Osmanthus fragrans promotes plant growth and oxidative damage reduction to enhance salt tolerance in Arabidopsis. Horticulturae 8:412 doi: 10.3390/horticulturae8050412
CrossRef Google Scholar
|
[30]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[31]
|
Cheng H, Zhou M, Si Y, Li W, Wang L, et al. 2023. Transcriptome analysis of ethylene response in Chrysanthemum moriflolium Ramat. with an emphasis on flowering delay. Horticulturae 9:428 doi: 10.3390/horticulturae9040428
CrossRef Google Scholar
|
[32]
|
Zheng Z, Chen P, Cao S, Zhong S, Wang Y, et al. 2022. EARLY FLOWERING3 gene confers earlier flowering and enhancement of salt tolerance in woody plant Osmanthus fragrans. Forests 13:1786 doi: 10.3390/f13111786
CrossRef Google Scholar
|
[33]
|
Sparkes IA, Runions J, Kearns A, Hawes C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols 1:2019−25 doi: 10.1038/nprot.2006.286
CrossRef Google Scholar
|
[34]
|
Barkoulas M, Galinha C, Grigg SP, Tsiantis M. 2007. From genes to shape: regulatory interactions in leaf development. Current Opinion in Plant Biology 10:660−66 doi: 10.1016/j.pbi.2007.07.012
CrossRef Google Scholar
|
[35]
|
Wang Q, Gao G, Chen X, Liu X, Dong B, et al. 2022. Genetic studies on continuous flowering in woody plant Osmanthus fragrans. Frontiers in Plant Science 13:1049479 doi: 10.3389/fpls.2022.1049479
CrossRef Google Scholar
|
[36]
|
Toledo-Ortiz G, Huq E, Quail PH. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell 15:1749−70 doi: 10.1105/tpc.013839
CrossRef Google Scholar
|
[37]
|
Hao Y, Zong X, Ren P, Qian Y, Fu A. 2021. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. International Journal of Molecular Sciences 22:7152 doi: 10.3390/ijms22137152
CrossRef Google Scholar
|
[38]
|
Romanowski A, Furniss JJ, Hussain E, Halliday KJ. 2021. Phytochrome regulates cellular response plasticity and the basic molecular machinery of leaf development. Plant Physiology 186:1220−39 doi: 10.1093/plphys/kiab112
CrossRef Google Scholar
|
[39]
|
Chitwood DH, Headland LR, Filiault DL, Kumar R, Jiménez-Gómez JM, et al. 2012. Native environment modulates leaf size and response to simulated foliar shade across wild tomato species. PLoS ONE 7:e29570 doi: 10.1371/journal.pone.0029570
CrossRef Google Scholar
|
[40]
|
Balsemão-Pires E, Andrade LR, Sachetto-Martins G. 2013. Functional study of TCP23 in Arabidopsis thaliana during plant development. Plant Physiology and Biochemistry 67:120−25 doi: 10.1016/j.plaphy.2013.03.009
CrossRef Google Scholar
|
[41]
|
Wang Y, Yu Y, Chen Q, Bai G, Gao W, et al. 2019. Heterologous expression of GbTCP4, a class II TCP transcription factor, regulates trichome formation and root hair development in Arabidopsis. Genes 10:726 doi: 10.3390/genes10090726
CrossRef Google Scholar
|
[42]
|
Navarro-Cartagena S, Micol JL. 2023. Is auxin enough? Cytokinins and margin patterning in simple leaves Trends in Plant Science 28:54−73 doi: 10.1016/j.tplants.2022.08.019
CrossRef Google Scholar
|
[43]
|
Wang H, Kong F, Zhou C. 2021. From genes to networks: the genetic control of leaf development. Journal of Integrative Plant Biology 63:1181−96 doi: 10.1111/jipb.13084
CrossRef Google Scholar
|
[44]
|
Wang J, Guan Y, Ding L, Li P, Zhao W, et al. 2019. The CmTCP20 gene regulates petal elongation growth in Chrysanthemum morifolium. Plant Science 280:248−57 doi: 10.1016/j.plantsci.2018.12.008
CrossRef Google Scholar
|
[45]
|
Scarpella E, Barkoulas M, Tsiantis M. 2010. Control of leaf and vein development by auxin. Cold Spring Harbor Perspectives in Biology 2:a001511 doi: 10.1101/cshperspect.a001511
CrossRef Google Scholar
|
[46]
|
Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. 2010. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. The Plant Cell 22:3574−88 doi: 10.1105/tpc.110.075598
CrossRef Google Scholar
|
[47]
|
Ferrero LV, Gastaldi V, Ariel FD, Viola IL, Gonzalez DH. 2021. Class I TCP proteins TCP14 and TCP15 are required for elongation and gene expression responses to auxin. Plant Molecular Biology 105:147−59 doi: 10.1007/s11103-020-01075-y
CrossRef Google Scholar
|
[48]
|
Nicolas M, Cubas P. 2016. TCP factors: new kids on the signaling block. Current Opinion in Plant Biology 33:33−41 doi: 10.1016/j.pbi.2016.05.006
CrossRef Google Scholar
|