[1] |
Ibrahim MM, Hafez SA, Mahdy MM. 2013. Organogels, hydrogels and bigels as transdermal delivery systems for diltiazem hydrochloride. Asian Journal of Pharmaceutical Sciences 8:48−57 doi: 10.1016/j.ajps.2013.07.006 |
[2] |
Lupi FR, Shakeel A, Greco V, Oliviero CN, Oliviero Rossi C , et al. 2016. A rheological and microstructural characterisation of bigels for cosmetic and pharmaceutical uses. Materials Science and Engineering: C 69:358−65 doi: 10.1016/j.msec.2016.06.098 |
[3] |
Shakeel A, Farooq U, Iqbal T, Yasin S, Lupi FR, et al. 2019. Key characteristics and modelling of bigels systems: a review. Materials Science and Engineering: C 97:932−53 doi: 10.1016/j.msec.2018.12.075 |
[4] |
Cao ZQ, Wang, GJ. 2016. Multi-stimuli-responsive polymer materials: particles, films, and bulk gels. The Chemical Record 16:1398−435 doi: 10.1002/tcr.201500281 |
[5] |
Martín-Illana A, Notario-Pérez F, Cazorla-Luna R, Ruiz-Caro R, Veiga MD. 2019. Smart freeze-dried bigels for the prevention of the sexual transmission of HIV by accelerating the vaginal release of tenofovir during intercourse. Pharmaceutics 11:232 doi: 10.3390/pharmaceutics11050232 |
[6] |
Rehman K, Zulfakar MH. 2017. Novel fish oil-based bigel system for controlled drug delivery and its influence on immunomodulatory activity of imiquimod against skin cancer. Pharmaceutical Research 34:36−48 doi: 10.1007/s11095-016-2036-8 |
[7] |
Sreekumar M, Mathan S, Mathew SS, Dharan SS. 2020. Bigels: An updated review. Journal of Pharmaceutical Science Research 12:1306−8 |
[8] |
Martinez RM, Magalhães WV, da Silva Sufi B, Padovani G, Nazato LIS, et al. 2021. Vitamin E-loaded bigels and emulsions: Physicochemical characterization and potential biological application. Colloids and Surfaces B: Biointerfaces 201:111651 doi: 10.1016/j.colsurfb.2021.111651 |
[9] |
Wakhet S, Singh VK, Sahoo S, Sagiri SS, Kulanthaivel S, et al. 2015. Characterization of gelatin–agar based phase separated hydrogel, emulgel and bigel: A comparative study. Journal of Materials Science: Materials in Medicine 26:118 doi: 10.1007/s10856-015-5434-2 |
[10] |
Singh VK, Banerjee I, Agarwal T, Pramanik K, Bhattacharya MK, et al. 2014. Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids and Surfaces B: Biointerfaces 123:582−92 doi: 10.1016/j.colsurfb.2014.09.056 |
[11] |
Sagiri SS, Singh VK, Kulanthaivel S, Banerjee I, Basak P, et al. 2015. Stearate organogel–gelatin hydrogel based bigels: Physicochemical, thermal, mechanical characterizations and in vitro drug delivery applications. Journal of the Mechanical Behavior of Biomedical Materials 43:1−17 doi: 10.1016/j.jmbbm.2014.11.026 |
[12] |
Saffold AC, Acevedo NC. 2021. Development of novel rice Bran Wax/Gelatin-based biphasic edible gels and characterization of their microstructural, thermal, and mechanical properties. Food and Bioprocess Technology 14:2219−30 doi: 10.1007/s11947-021-02719-7 |
[13] |
Mousavi SN, Hosseini E, Seyed Dorraji MS, Sheikh Mohammadi S, Pourmansouri Z, et al. 2021. Synthesis of a green bigel using cottonseed oil/cannabis oil/alginate/ferula gum for quercetin release: Synergistic effects for treating infertility in rats. International Journal of Biological Macromolecules 177:157−65 doi: 10.1016/j.ijbiomac.2021.02.121 |
[14] |
Fasolin LH, Martins AJ, Cerqueira MA, Vicente AA. 2021. Modulating process parameters to change physical properties of bigels for food applications. Food Structure 28:100173 doi: 10.1016/j.foostr.2020.100173 |
[15] |
Behera B, Sagiri SS, Singh VK, Pal K, Anis A. 2014. Mechanical properties and delivery of drug/probiotics from starch and non-starch based novel bigels: A comparative study. Starch ‐ Stärke 66:865−79 doi: 10.1002/star.201400045 |
[16] |
Ghiasi F, Golmakani MT. 2022. Fabrication and characterization of a novel biphasic system based on starch and ethylcellulose as an alternative fat replacer in a model food system. Innovative Food Science & Emerging Technologies 78:103028 doi: 10.1016/j.ifset.2022.103028 |
[17] |
Behera B, Singh VK, Kulanthaivel S, Bhattacharya MK, Paramanik K, et al. 2015. Physical and mechanical properties of sunflower oil and synthetic polymers based bigels for the delivery of nitroimidazole antibiotic – A therapeutic approach for controlled drug delivery. European Polymer Journal 64:253−264 doi: 10.1016/j.eurpolymj.2015.01.018 |
[18] |
Yang J, Zheng H, Mo Y, Gao Y, Mao L. 2022. Structural characterization of hydrogel-oleogel biphasic systems as affected by oleogelators. Food Research International 158:111536 doi: 10.1016/j.foodres.2022.111536 |
[19] |
Lu Y, Zhong Y, Guo X, Zhang J, Gao Y, et al. 2022. Structural modification of O/W bigels by glycerol monostearate for improved co-delivery of curcumin and epigallocatechin gallate. ACS Food Science & Technology 2:975−83 doi: 10.1021/acsfoodscitech.2c00044 |
[20] |
Raytthatha N, Vyas J, Shah I, Upadhyay U. 2022. Bigels: A newer system–An opportunity for topical application. Hamdan Medical Journal 15:113−21 doi: 10.4103/hmj.hmj_33_22 |
[21] |
Quilaqueo M, Iturra N, Contardo I, Millao S, Morales E, et al. 2022. Food-Grade Bigels with Potential to Replace Saturated and Trans Fats in Cookies. Gels 8:445 doi: 10.3390/gels8070445 |
[22] |
Zhu Q, Gao J, Han L, Han K, Wei W, et al. 2021. Development and characterization of novel bigels based on monoglyceride-beeswax oleogel and high acyl gellan gum hydrogel for lycopene delivery. Food Chemistry 365:130419 doi: 10.1016/j.foodchem.2021.130419 |
[23] |
Cox WP, Merz EH. 1958. Correlation of dynamic and steady flow viscosities. Journal of Polymer Science 28:619−22 doi: 10.1002/pol.1958.1202811812 |
[24] |
Miyoshi E, Nishinari K. 1999. Non-Newtonian flow behaviour of gellan gum aqueous solutions. Colloid and Polymer Science 277:727−34 doi: 10.1007/s003960050446 |
[25] |
Viana VR, Silva MBF, Azero EG, Silva KGH, Andrade CT. 2018. Assessing the stabilizing effect of xanthan gum on vitamin D-enriched pecan oil in oil-in-water emulsions. Colloids and Surfaces A:Physicochemical and Engineering Aspects 555:646−52 doi: 10.1016/j.colsurfa.2018.07.052 |
[26] |
Isaac Contreras-Ramírez J, Alberto Gallegos-Infante J, Rosas-Flores W, Francisco González-Laredo R, Fernando Toro-Vázquez J, et al. 2021. Relationship of rheological and thermal properties in organogel emulsions (W/O): Influence of temperature, time, and surfactant concentration on thermomechanical behavior. Journal of Molecular Liquids 337:116403 doi: 10.1016/j.molliq.2021.116403 |
[27] |
Pérez-Salas JL, Medina-Torres L, Rocha-Guzmán NE, Calderas F, González-Laredo RF, et al. 2022. A water in oil gelled emulsion as a topical release vehicle for curcumin. Starch ‐ Stärke 74:2200006 doi: 10.1002/star.202200006 |
[28] |
León-Martínez FM, Rodríguez-Ramírez J, Medina-Torres LL, Méndez Lagunas LL, Bernad-Bernad MJ. 2011. Effects of drying conditions on the rheological properties of reconstituted mucilage solutions (Opuntia ficus-indica). Carbohydrate Polymers 84:439−45 doi: 10.1016/j.carbpol.2010.12.004 |
[29] |
Gallegos-Infante JA, del Pilar Galindo-Galindo M, Moreno-Jiménez MR, Rocha-Guzmán NE, González-Laredo RF. 2022. Effect of Aqueous Extracts of Quercus resinosa on the Mechanical Behavior of Bigels. Scientia Pharmaceutica 90:73 doi: 10.3390/scipharm90040073 |
[30] |
Ojeda-Serna IE, Rocha-Guzmán NE, Gallegos-Infante JA, Cháirez-Ramírez MH, Rosas-Flores W, et al. 2019. Water-in-oil organogel based emulsions as a tool for increasing bioaccessibility and cell permeability of poorly water-soluble nutraceuticals. Food Research International 120:415−24 doi: 10.1016/j.foodres.2019.03.011 |
[31] |
Dolz M, Hernández MJ, Delegido J. 2008. Creep and recovery experimental investigation of low oil content food emulsions. Food Hydrocolloids 22:421−27 doi: 10.1016/j.foodhyd.2006.12.011 |
[32] |
Paul SR, Qureshi D, Yogalakshmi Y, Nayak SK, Singh VK, et al. 2018. Development of bigels based on stearic acid–rice bran oil oleogels and tamarind gum hydrogels for controlled delivery applications. Journal of Surfactants and Detergents 21:17−29 doi: 10.1002/jsde.12022 |
[33] |
Lemaitre-Aghazarian V, Piccerelle P, Reynier JP, Joachim J, Phan-Tan-Luu R, et al. 2004. Texture optimization of water-in-oil emulsions. Pharmaceutical Development and Technology 9:125−34 doi: 10.1081/PDT-120027424 |
[34] |
Singh VK, Anis A, Banerjee I, Pramanik K, Bhattacharya MK, et al. 2014. Preparation and characterization of novel carbopol based bigels for topical delivery of metronidazole for the treatment of bacterial vaginosis. Materials Science and Engineering: C 44:151−58 doi: 10.1016/j.msec.2014.08.026 |
[35] |
Zampouni K, Mouzakitis CK, Lazaridou A, Moschakis T, Katsanidis E. 2023. Physicochemical properties and microstructure of bigels formed with gelatin and κ-carrageenan hydrogels and monoglycerides in olive oil oleogels. Food Hydrocolloids 140:108636 doi: 10.1016/j.foodhyd.2023.108636 |
[36] |
Contreras-Ramírez JI, Gallegos-Infante JA, Pérez-Martínez JD, Dibildox-Alvarado E, Rocha-Guzmán NE, et al. 2020. Influence of vegetable oil, monoglycerides and polyglycerol polyricinoleate into the physical stability of organogel-emulsion (w/o) systems. SN Applied Sciences 2:1343 doi: 10.1007/s42452-020-3144-y |
[37] |
Habibi A, Kasapis S, Truong T. 2022. Effect of hydrogel particle size embedded into oleogels on the physico-functional properties of hydrogel-in-oleogel (bigels). LWT – Food Science and Technology 163:113501 doi: 10.1016/j.lwt.2022.113501 |
[38] |
Peressini D, Bravin B, Lapasin R, Rizzotti C, Sensidoni A. 2003. Starch–methylcellulose based edible films: rheological properties of film-forming dispersions. Journal of Food Engineering 59:25−32 doi: 10.1016/S0260-8774(02)00426-0 |
[39] |
Navarini L, Cesàro A, Ross-Murphy SB. 1992. Viscoelastic properties of aqueous solutions of an exocellular polysaccharide from cyanobacteria. Carbohydrate Polymers 18:265−72 doi: 10.1016/0144-8617(92)90091-4 |
[40] |
Vernon-Carter EJ, Avila-De La Rosa G, Carrillo-Navas H, Carrera Y, Alvarez-Ramirez J. 2016. Cox–Merz rules from phenomenological Kelvin–Voigt and Maxwell models. Journal of Food Engineering 169:18−26 doi: 10.1016/j.jfoodeng.2015.08.005 |
[41] |
Kwak MS, Ahn HJ, Song KW. 2015. Rheological investigation of body cream and body lotion in actual application conditions. Korea-Australia Rheology Journal 27:241−51 doi: 10.1007/s13367-015-0024-x |
[42] |
Murillo-Martínez MM, Pedroza-Islas R, Lobato-Calleros C, Martínez-Ferez A, Vernon-Carter EJ. 2011. Designing W1/O/W2 double emulsions stabilized by protein–polysaccharide complexes for producing edible films: Rheological, mechanical and water vapour properties. Food Hydrocolloids 25:577−85 doi: 10.1016/j.foodhyd.2010.06.015 |
[43] |
Medina-Torres L, García-Cruz EE, Calderas F, González-Laredo, RF, Sánchez-Olivares G, et al. 2013. Microencapsulation by spray drying of gallic acid with nopal mucilage (Opuntia ficus indica). LWT - Food Science and Technology 50:642−50 doi: 10.1016/j.lwt.2012.07.038 |
[44] |
Cervantes-Martínez CV, Medina-Torres L, González-Laredo RF, Calderas F, Sánchez-Olivares G, et al. 2014. Study of spray drying of the Aloe vera mucilage (Aloe vera barbadensis Miller) as a function of its rheological properties. LWT - Food Science and Technology 55:426−35 doi: 10.1016/j.lwt.2013.09.026 |