[1]

McDonald BA, Linde C. 2002. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163−80

doi: 10.1023/A:1015678432355
[2]

Mundt CC. 2002. Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology 40:381−410

doi: 10.1146/annurev.phyto.40.011402.113723
[3]

Keneni G, Bekele E, Imtiaz M, Dagne K. 2012. Genetic vulnerability of modern crop cultivars: causes, mechanism and remedies. International Journal of Plant Research 2:69−79

doi: 10.5923/j.plant.20120203.05
[4]

Hobbelen PHF, Paveley ND, van den Bosch F. 2014. The emergence of resistance to fungicides. PLoS ONE 9:e91910

doi: 10.1371/journal.pone.0091910
[5]

Fritz RS, Simms EL. 1992. Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics, eds. Fritz RS, Simms EL, Chicago: University of Chicago Press. pp. 100−5. https://press.uchicago.edu/ucp/books/book/chicago/P/bo3618551.html

[6]

Mundt CC, Browning JA. 1985. Development of crown rust epidemics in genetically diverse oat populations: effect of genotype unit area. Phytopathology 75:607−10

doi: 10.1094/Phyto-75-607
[7]

Mundt CC, Browning JA. 1985. Genetic diversity and cereal rust management. In The Cereal Rusts: Diseases, Distribution, Epidemiology, and Control, ed. Roelfs AP, Bushnell WR. Cambridge, MA: Academic Press. pp 527–60. https://doi.org/10.1016/B978-0-12-148402-6.50025-0

[8]

Garrett KA, Mundt CC. 1999. Epidemiology in mixed host populations. Phytopathology 89:984−90

doi: 10.1094/PHYTO.1999.89.11.984
[9]

Wolfe MS. 1985. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annual Review of Phytopathology 23:251−73

doi: 10.1146/annurev.py.23.090185.001343
[10]

Passey TAJ. 2018. Population genetics and epidemiological effects on Venturia inaequalis from mixed cultivar apple orchards. Thesis. University of Reading. UK. pp. 17−21. https://centaur.reading.ac.uk/84872/1/21027913_Passey_Thesis.pdf

[11]

Finckh MR, Gacek ES, Goyeau H, Lannou C, Merz U, et al. 2000. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20:813−37

doi: 10.1051/agro:2000177
[12]

Borg J, Kiær LP, Lecarpentier C, Goldringer I, Gauffreteau A, et al. 2018. Unfolding the potential of wheat cultivar mixtures: a meta-analysis perspective and identification of knowledge gaps. Field Crops Research 221:298−313

doi: 10.1016/j.fcr.2017.09.006
[13]

Finckh, Gacek, Czembor, Wolfe. 1999. Host frequency and density effects on powdery mildew and yield in mixtures of barley cultivars. Plant Pathology 48:807−16

doi: 10.1046/j.1365-3059.1999.00398.x
[14]

Huang C, Sun Z, Wang H, Luo Y, Ma Z. 2012. Effects of wheat cultivar mixtures on stripe rust: a meta-analysis on field trials. Crop Protection 33:52−58

doi: 10.1016/j.cropro.2011.11.020
[15]

Zhu Y, Chen H, Fan J, Wang Y, Li Y, et al. 2000. Genetic diversity and disease control in rice. Nature 406:718−22

doi: 10.1038/35021046
[16]

Ben M'Barek S, Karisto P, Abdedayem W, Laribi M, Fakhfakh M, et al. 2020. Improved control of septoria tritici blotch in durum wheat using cultivar mixtures. Plant Pathology 69:1655−65

doi: 10.1111/ppa.13247
[17]

Pilet F, Chacón G, Forbes GA, Andrivon D. 2006. Protection of susceptible potato cultivars against late blight in mixtures increases with decreasing disease pressure. Phytopathology 96:777−83

doi: 10.1094/PHYTO-96-0777
[18]

Xu X. 2012. Super-races are not likely to dominate a fungal population within a life time of a perennial crop plantation of cultivar mixtures: a simulation study. BMC Ecology 12:16

doi: 10.1186/1472-6785-12-16
[19]

Ohtsuki A, Sasaki A. 2006. Epidemiology and disease-control under gene-for-gene plant–pathogen interaction. Journal of Theoretical Biology 238:780−94

doi: 10.1016/j.jtbi.2005.06.030
[20]

Mcdonald BA, Linde C. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology 40:349−79

doi: 10.1146/annurev.phyto.40.120501.101443
[21]

Mcdonald BA, Stukenbrock EH. 2016. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 371:20160026

doi: 10.1098/rstb.2016.0026
[22]

Dutta A, Croll D, McDonald BA, Barrett LG. 2021. Maintenance of variation in virulence and reproduction in populations of an agricultural plant pathogen. Evolutionary Applications 14:335−47

doi: 10.1111/eva.13117
[23]

Newton AC, Begg GS, Swanston JS. 2009. Deployment of diversity for enhanced crop function. Annals of Applied Biology 154:309−22

doi: 10.1111/j.1744-7348.2008.00303.x
[24]

MacHardy WE. 1996. Apple scab: biology, epidemiology, and management. Minnesota: The American Phytopathological Society Press. xvi, 545 pp.

[25]

Tronsmo AM, Collinge DB, Djurle A, Munk L, Yuen J, et al. 2020. Plant pathology and plant diseases. Boston, MA: CAB International. pp. 60−62.

[26]

Belete T, Boyraz N. 2017. Critical review on apple scab (Venturia inaequalis) biology, epidemiology, economic importance, management and defense mechanisms to the causal agent. Journal of Plant Physiology & Pathology 5:1000166

[27]

Turechek WW. 2004. Apple diseases and their management. In Diseases of Fruits and Vegetables, ed. Naqvi SAMH. Volume I: xii, 691 pp. Dordrecht: Springer. pp. 1−108. https://doi.org/10.1007/1-4020-2606-4_1

[28]

Rancāne R, Valiuškaitė A, Stensvand A. 2023. Primary inoculum of Venturia inaequalis (Cooke) Wint. in its asexual form in apple – a review. Frontiers in Horticulture 2:1175956

doi: 10.3389/fhort.2023.1175956
[29]

Holb IJ. 2009. Fungal disease management in environmentally friendly apple production – a review. In Climate Change, Intercropping, Pest Control and Beneficial Microorganisms, ed. Lichtfouse E. Volume 2: x, 513. Dordrecht: Springer. pp 219–92. https://doi.org/10.1007/978-90-481-2716-0_10

[30]

Holb IJ, Kunz S. 2016. Integrated control of apple scab and powdery mildew in an organic apple orchard by combining potassium carbonates with wettable sulfur, pruning, and cultivar susceptibility. Plant Disease 100:1894−905

doi: 10.1094/PDIS-12-15-1416-RE
[31]

AHDB. 2022. Apple Best Practice Guide. https://horticulture.ahdb.org.uk/knowledge-library/apple-best-practice-guide.

[32]

MacHardy WE, Gadoury DM, Gessler C. 2001. Parasitic and biological fitness of Venturia inaequalis: relationship to disease management strategies. Plant Disease 85:1036−51

doi: 10.1094/PDIS.2001.85.10.1036
[33]

Hill SA. 1975. The importance of wood scab caused by Venturia inaequalis (cke.) wint. as a source of infection for apple leaves in the spring. Journal of Phytopathology 82:216−23

doi: 10.1111/j.1439-0434.1975.tb03486.x
[34]

Holb IJ, Heijne B, Jeger MJ. 2004. Overwintering of conidia of Venturia inaequalis and the contribution to early epidemics of apple scab. Plant Disease 88:751−57

doi: 10.1094/PDIS.2004.88.7.751
[35]

González-Domínguez E, Armengol J, Rossi V. 2017. Biology and epidemiology of Venturia species affecting fruit crops: a review. Frontiers in Plant Science 8:1496

doi: 10.3389/fpls.2017.01496
[36]

Agrios GN. 2004. Plant Pathology Fifth Edition. Amsterdam, NL: Elsevier. pp. 79−103

[37]

Bowen JK, Mesarich CH, Bus VGM, Beresford RM, Plummer KM, et al. 2011. Venturia inaequalis: the causal agent of apple scab. Molecular Plant Pathology 12:105−22

doi: 10.1111/j.1364-3703.2010.00656.x
[38]

MacHardy WE, Gadoury DM. 1989. A revision of Mills' s criteria for predicting apple scab infection periods. Phytopathology 79:304−10

doi: 10.1094/Phyto-79-304
[39]

Singh KP, Aravind T. 2021. Postharvest diseases and disorders of apple: perspectives for integrated management. In Postharvest Handling and Diseases of Horticultural Produce, eds. Singh D, Sharma RR, Devappa V, Kamil D. Boca Raton: CRC Press. pp 267–80. https://doi.org/10.1201/9781003045502-23

[40]

Fiaccadori R. 2018. In vitro, in vivo and in field sensitivity of Venturia inaequalis to anilinopyrimidine fungicides with different types of scab management and dfegree of control. Open Access Library Journal 05:e5092

doi: 10.4236/oalib.1105092
[41]

Philion V, Joubert V, Trapman M, Stensvand A. 2023. Physical modes of action of fungicides against apple scab: timing is everything, but dose matters. Plant Disease

doi: 10.1094/PDIS-11-22-2758-RE
[42]

Chatzidimopoulos M, Lioliopoulou F, Sotiropoulos T, Vellios E. 2020. Efficient control of apple scab with targeted spray applications. Agronomy 10:217

doi: 10.3390/agronomy10020217
[43]

Berrie AM, Xu X. 2003. Managing apple scab (Venturia inaequalis) and powdery mildew (Podosphaera leucotricha) using AdemTM. International Journal of Pest Management 49:243−49

doi: 10.1080/0967087031000101089
[44]

Mills WD. 1944. Efficient use of sulfur dusts and sprays during rain to control apple scab. Cornell Extension Bulletin 630:1−4

[45]

Holb IJ, Fazekas M, Abonyi F, Lakatos P, Thurzó S, et al. 2009. Effect of reduced spray programmes on incidences of apple scab, powdery mildew and codling moth damage in environmentally friendly apple production systems. International Journal of Horticultural Science 15:75−78

doi: 10.31421/ijhs/15/4/846
[46]

Wightwick A, Walters R, Allinson G, Reichman S, Menzies N. 2010. Environmental risks of fungicides used in horticultural production systems. In Fungicides, ed. Carisse O. 550 pp. London, UK: InTechOpen. pp 273–304. https://doi.org/10.5772/13032

[47]

Holb IJ, Jong PF, Heijne B. 2003. Efficacy and phytotoxicity of lime sulphur in organic apple production. Annals of Applied Biology 142:225−33

doi: 10.1111/j.1744-7348.2003.tb00245.x
[48]

Ebrahimi L, Fotuhifar KB, Javan Nikkhah M, Naghavi MR, Baisakh N. 2016. Population genetic structure of apple scab (Venturia inaequalis (cooke) G. winter) in Iran. PLoS ONE 11:e0160737

doi: 10.1371/journal.pone.0160737
[49]

Beckerman JL, Sundin GW, Rosenberger DA. 2015. Do some IPM concepts contribute to the development of fungicide resistance? Lessons learned from the apple scab pathosystem in the United States Pest Management Science 71:331−42

doi: 10.1002/ps.3715
[50]

Burr TJ, Matteson MC, Smith CA, Corral-Garcia MR, Huang TC. 1996. Effectiveness of bacteria and yeasts from apple orchards as biological control agents of apple scab. Biological Control 6:151−57

doi: 10.1006/bcon.1996.0019
[51]

Köhl J, Scheer C, Holb IJ, Masny S, Molhoek W. 2015. Toward an integrated use of biological control by Cladosporium cladosporioides H39 in apple scab (Venturia inaequalis) management. Plant Disease 99:535−43

doi: 10.1094/PDIS-08-14-0836-RE
[52]

Carisse O, Philion V, Rolland D, Bernier J. 2000. Effect of fall application of fungal antagonists on spring ascospore production of the apple scab pathogen, Venturia inaequalis. Phytopathology 90:31−37

doi: 10.1094/PHYTO.2000.90.1.31
[53]

Health and Safety Executive. 2022. Pesticide Register of Authorised Products. https://secure.pesticides.gov.uk/pestreg/default.asp

[54]

Carisse O, Dewdney M. 2002. A review of non-fungicidal approaches for the control of apple scab. Phytoprotection 83:1−29

doi: 10.7202/706226ar
[55]

Holb IJ, Heijne B, Jeger MJ. 2006. Effects of integrated control measures on earthworms, leaf litter and Venturia inaequalis infection in two European apple orchards. Agriculture, Ecosystems & Environment 114:287−95

doi: 10.1016/j.agee.2005.11.021
[56]

Majeed M, Bhat NA, Badri ZA, Yousuf V, Wani TA, et al. 2017. Non-chemical management of apple scab-a global perspective. International Journal of Environment, Agriculture and Biotechnology (IJEAB) 2:912−21

doi: 10.22161/ijeab/2.2.45
[57]

Holb IJ. 2005. Effect of pruning on apple scab in organic apple production. Plant Disease 89:611−18

doi: 10.1094/PD-89-0611
[58]

Holb IJ, Heijne B, Jeger MJ. 2005. The widespread occurrence of overwintered conidial inoculum of Venturia inaequalis on shoots and buds in organic and integrated apple orchards across the Netherlands. European Journal of Plant Pathology 111:157−68

doi: 10.1007/s10658-004-1883-z
[59]

Holb IJ, Heijne B, Withagen JCM, Jeger MJ. 2004. Dispersal of Venturia inaequalis ascospores and disease gradients from a defined inoculum source. Journal of Phytopathology 152:639−46

doi: 10.1111/j.1439-0434.2004.00910.x
[60]

Rademacher W. 2015. Plant growth regulators: backgrounds and uses in plant production. Journal of Plant Growth Regulation 34:845−72

doi: 10.1007/s00344-015-9541-6
[61]

Soriano JM, Madduri M, Schaart JG, van der Burgh A, van Kaauwen MPW, et al. 2014. Fine mapping of the gene Rvi18 (V25) for broad-spectrum resistance to apple scab, and development of a linked SSR marker suitable for marker-assisted breeding. Molecular Breeding 34:2021−32

doi: 10.1007/s11032-014-0159-3
[62]

Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L. 2006. Venturia inaequalis resistance in apple. Critical Reviews in Plant Sciences 25:473−503

doi: 10.1080/07352680601015975
[63]

Khajuria YP, Kaul S, Wani AA, Dhar MK. 2018. Genetics of resistance in apple against Venturia inaequalis (Wint.) Cke. Tree Genetics & Genomes 14:16

doi: 10.1007/s11295-018-1226-4
[64]

Bus VGM, Rikkerink EHA, Caffier V, Durel CE, Plummer KM. 2011. Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annual Review of Phytopathology 49:391−413

doi: 10.1146/annurev-phyto-072910-095339
[65]

Gessler C, Pertot I. 2012. Vf scab resistance of Malus. Trees 26:95−108

doi: 10.1007/s00468-011-0618-y
[66]

Patocchi A, Wehrli A, Dubuis PH, Auwerkerken A, Leida C, et al. 2020. Ten years of VINQUEST: first insight for breeding new apple cultivars with durable apple scab resistance. Plant Disease 104:2074−81

doi: 10.1094/PDIS-11-19-2473-SR
[67]

Soufflet-Freslon V, Gianfranceschi L, Patocchi A, Durel CE. 2008. Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL. Genome 51:657−68

doi: 10.1139/G08-046
[68]

Patocchi A, Bigler B, Koller B, Kellerhals M, Gessler C. 2004. Vr2: a new apple scab resistance gene. Theoretical and Applied Genetics 109:1087−92

doi: 10.1007/s00122-004-1723-8
[69]

Papp D, Gao L, Thapa R, Olmstead D, Khan A. 2020. Field apple scab susceptibility of a diverse Malus germplasm collection identifies potential sources of resistance for apple breeding. CABI Agriculture and Bioscience 1:16

doi: 10.1186/s43170-020-00017-4
[70]

Khan A, Korban SS. 2022. Breeding and genetics of disease resistance in temperate fruit trees: challenges and new opportunities. Theoretical and Applied Genetics 135:3961−85

doi: 10.1007/s00122-022-04093-0
[71]

Bus VGM, Bowen JK, Patocchi A, Broggini GAL, Kumar S, et al. 2019. Breeding fruit cultivars with durable disease resistance. In Integrated Management of Diseases and Insect Pests of Tree Fruit, eds. Xu X, Fountain M. Cambridge, UK: Burleigh Dodds Science Publishing. pp 233–74. https://doi.org/10.19103/as.2019.0046.12

[72]

van Nocker S, Gardiner SE. 2014. Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Horticulture Research 1:14022

doi: 10.1038/hortres.2014.22
[73]

Flachowsky H, Le Roux PM, Peil A, Patocchi A, Richter K, et al. 2011. Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytologist 192:364−77

doi: 10.1111/j.1469-8137.2011.03813.x
[74]

Abdul Fiyaz R, Ajay BC, Ramya KT, Aravind Kumar J, Sundaram RM, et al. 2020. Speed breeding: methods and applications. In Accelerated Plant Breeding, eds. Gosal SS, Wani SH. Volume 1: xv, 450. Switzerland: Springer Cham. pp 31–49. https://doi.org/10.1007/978-3-030-41866-3_2

[75]

United Kingdom of Great Britain and Northern Ireland. 2023. Genetic Technology (Precision Breeding) Act 2023. www.legislation.gov.uk/ukpga/2023/6/section/47/enacted

[76]

Passey TAJ, Shaw MW, Xu X. 2016. Differentiation in populations of the apple scab fungus Venturia inaequalis on cultivars in a mixed orchard remain over time. Plant Pathology 65:1133−41

doi: 10.1111/ppa.12492
[77]

Merwin IA, Valois S, Padilla-Zakour OI. 2008. Cider apples and cider-making techniques in Europe and North America. Horticultural Reviews 34:365−415

doi: 10.1002/9780470380147.ch6
[78]

Xu X, Harvey N, Roberts A, Barbara D. 2013. Population variation of apple scab (Venturia inaequalis) within mixed orchards in the UK. European Journal of Plant Pathology 135:97−104

doi: 10.1007/s10658-012-0068-4
[79]

Lindhout P. 2002. The perspectives of polygenic resistance in breeding for durable disease resistance. Euphytica 124:217−26

doi: 10.1023/A:1015686601404
[80]

Stuthman DD, Leonard KJ, Miller-Garvin J. 2007. Breeding crops for durable resistance to disease. Advances in Agronomy 95:319−67

doi: 10.1016/S0065-2113(07)95004-X
[81]

Barbara DJ, Roberts AL, Xu X. 2008. Virulence characteristics of apple scab (Venturia inaequalis) isolates from monoculture and mixed orchards. Plant Pathology 57:552−61

doi: 10.1111/j.1365-3059.2007.01781.x
[82]

Pariaud B, Ravigné V, Halkett F, Goyeau H, Carlier J, et al. 2009. Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathology 58:409−24

doi: 10.1111/j.1365-3059.2009.02039.x
[83]

Caffier V, Didelot F, Pumo B, Causeur D, Durel CE, et al. 2010. Aggressiveness of eight Venturia inaequalis isolates virulent or avirulent to the major resistance gene Rvi6 on a non-Rvi6 apple cultivar. Plant Pathology 59:1072−80

doi: 10.1111/j.1365-3059.2010.02345.x
[84]

Caffier V, Lasserre-Zuber P, Giraud M, Lascostes M, Stievenard R, et al. 2014. Erosion of quantitative host resistance in the apple × Venturia inaequalis pathosystem. Infection, Genetics and Evolution 27:481−89

doi: 10.1016/j.meegid.2014.02.003
[85]

Lê Van A, Caffier V, Lasserre-Zuber P, Chauveau A, Brunel D, et al. 2013. Differential selection pressures exerted by host resistance quantitative trait loci on a pathogen population: a case study in an apple × Venturia inaequalis pathosystem. New Phytologist 197:899−908

doi: 10.1111/nph.12086
[86]

Guérin F, Le Cam B. 2004. Breakdown of the scab resistance gene Vf in apple leads to a founder effect in populations of the fungal pathogen Venturia inaequalis. Phytopathology 94:364−69

doi: 10.1094/PHYTO.2004.94.4.364
[87]

Leroy T, Lemaire C, Dunemann F, Le Cam B. 2013. The genetic structure of a Venturia inaequalis population in a heterogeneous host population composed of different Malus species. BMC Evolutionary Biology 13:64

doi: 10.1186/1471-2148-13-64
[88]

Sierotzki H, Eggenschwiler M, Boillat O, McDermott JM, Gessler C. 1994. Detection of variation in virulence toward susceptible apple cultivars in natural populations of Venturia inaequalis. Phytopathology 84:1005−9

doi: 10.1094/Phyto-84-1005
[89]

Didelot F, Brun L, Parisi L. 2007. Effects of cultivar mixtures on scab control in apple orchards. Plant Pathology 56:1014−22

doi: 10.1111/j.1365-3059.2007.01695.x
[90]

Parisi L, Gros C, Combe F, Parveaud CE, Gomez C, et al. 2013. Impact of a cultivar mixture on scab, powdery mildew and rosy aphid in an organic apple orchard. Crop Protection 43:207−12

doi: 10.1016/j.cropro.2012.09.014
[91]

Gladieux P, Zhang X, Afoufa-Bastien D, Valdebenito Sanhueza RM, Sbaghi M, et al. 2008. On the origin and spread of the Scab disease of apple: out of Central Asia. PLoS ONE 3:e1455

doi: 10.1371/journal.pone.0001455
[92]

Leroy T, Le Cam B, Lemaire C. 2014. When virulence originates from non-agricultural hosts: new insights into plant breeding. Infection, Genetics and Evolution 27:521−29

doi: 10.1016/j.meegid.2013.12.022
[93]

Lê Van A, Gladieux P, Lemaire C, Cornille A, Giraud T, et al. 2012. Evolution of pathogenicity traits in the apple scab fungal pathogen in response to the domestication of its host. Evolutionary Applications 5:694−704

doi: 10.1111/j.1752-4571.2012.00246.x
[94]

Sierotzki H, Gessler C. 1998. Genetic analysis of a cross of two Venturia inaequalis strains that differ in virulence. Journal of Phytopathology 146:515−19

doi: 10.1111/j.1439-0434.1998.tb04613.x
[95]

Sierotzki H, Gessler C. 1998. Inheritance of virulence of Venturia inaequalis toward mains × domestica cultivars. Journal of Phytopathology 146:509−14

doi: 10.1111/j.1439-0434.1998.tb04612.x
[96]

Flor HH. 1956. The complementary genic systems in flax and flax rust. Advances in Genetics 8:29−54

doi: 10.1016/S0065-2660(08)60498-8
[97]

Passey TAJ, Robinson JD, Shaw MW, Xu X. 2017. The relative importance of conidia and ascospores as primary inoculum of Venturia inaequalis in a southeast England orchard. Plant Pathology 66:1445−51

doi: 10.1111/ppa.12686
[98]

Passey TAJ, Armitage AD, Sobczyk MK, Shaw MW, Xu X. 2020. Genomic sequencing indicates non-random mating of Venturia inaequalis in a mixed cultivar orchard. Plant Pathology 69:669−76

doi: 10.1111/ppa.13150
[99]

Lu Y, Lu R, Zhang Z. 2022. Development and preliminary evaluation of a new apple harvest assist and In-field sorting machine. Applied Engineering in Agriculture 38:23−35

doi: 10.13031/aea.14522
[100]

Verbiest R, Ruysen K, Vanwalleghem T, Demeester E, Kellens K. 2021. Automation and robotics in the cultivation of pome fruit: where do we stand today? Journal of Field Robotics 38:513−31

doi: 10.1002/rob.22000