[1]
|
McDonald BA, Linde C. 2002. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163−80 doi: 10.1023/A:1015678432355
CrossRef Google Scholar
|
[2]
|
Mundt CC. 2002. Use of multiline cultivars and cultivar mixtures for disease management. Annual Review of Phytopathology 40:381−410 doi: 10.1146/annurev.phyto.40.011402.113723
CrossRef Google Scholar
|
[3]
|
Keneni G, Bekele E, Imtiaz M, Dagne K. 2012. Genetic vulnerability of modern crop cultivars: causes, mechanism and remedies. International Journal of Plant Research 2:69−79 doi: 10.5923/j.plant.20120203.05
CrossRef Google Scholar
|
[4]
|
Hobbelen PHF, Paveley ND, van den Bosch F. 2014. The emergence of resistance to fungicides. PLoS ONE 9:e91910 doi: 10.1371/journal.pone.0091910
CrossRef Google Scholar
|
[5]
|
Fritz RS, Simms EL. 1992. Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics, eds. Fritz RS, Simms EL, Chicago: University of Chicago Press. pp. 100−5. https://press.uchicago.edu/ucp/books/book/chicago/P/bo3618551.html
|
[6]
|
Mundt CC, Browning JA. 1985. Development of crown rust epidemics in genetically diverse oat populations: effect of genotype unit area. Phytopathology 75:607−10 doi: 10.1094/Phyto-75-607
CrossRef Google Scholar
|
[7]
|
Mundt CC, Browning JA. 1985. Genetic diversity and cereal rust management. In The Cereal Rusts: Diseases, Distribution, Epidemiology, and Control, ed. Roelfs AP, Bushnell WR. Cambridge, MA: Academic Press. pp 527–60. https://doi.org/10.1016/B978-0-12-148402-6.50025-0
|
[8]
|
Garrett KA, Mundt CC. 1999. Epidemiology in mixed host populations. Phytopathology 89:984−90 doi: 10.1094/PHYTO.1999.89.11.984
CrossRef Google Scholar
|
[9]
|
Wolfe MS. 1985. The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annual Review of Phytopathology 23:251−73 doi: 10.1146/annurev.py.23.090185.001343
CrossRef Google Scholar
|
[10]
|
Passey TAJ. 2018. Population genetics and epidemiological effects on Venturia inaequalis from mixed cultivar apple orchards. Thesis. University of Reading. UK. pp. 17−21. https://centaur.reading.ac.uk/84872/1/21027913_Passey_Thesis.pdf
|
[11]
|
Finckh MR, Gacek ES, Goyeau H, Lannou C, Merz U, et al. 2000. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20:813−37 doi: 10.1051/agro:2000177
CrossRef Google Scholar
|
[12]
|
Borg J, Kiær LP, Lecarpentier C, Goldringer I, Gauffreteau A, et al. 2018. Unfolding the potential of wheat cultivar mixtures: a meta-analysis perspective and identification of knowledge gaps. Field Crops Research 221:298−313 doi: 10.1016/j.fcr.2017.09.006
CrossRef Google Scholar
|
[13]
|
Finckh, Gacek, Czembor, Wolfe. 1999. Host frequency and density effects on powdery mildew and yield in mixtures of barley cultivars. Plant Pathology 48:807−16 doi: 10.1046/j.1365-3059.1999.00398.x
CrossRef Google Scholar
|
[14]
|
Huang C, Sun Z, Wang H, Luo Y, Ma Z. 2012. Effects of wheat cultivar mixtures on stripe rust: a meta-analysis on field trials. Crop Protection 33:52−58 doi: 10.1016/j.cropro.2011.11.020
CrossRef Google Scholar
|
[15]
|
Zhu Y, Chen H, Fan J, Wang Y, Li Y, et al. 2000. Genetic diversity and disease control in rice. Nature 406:718−22 doi: 10.1038/35021046
CrossRef Google Scholar
|
[16]
|
Ben M'Barek S, Karisto P, Abdedayem W, Laribi M, Fakhfakh M, et al. 2020. Improved control of septoria tritici blotch in durum wheat using cultivar mixtures. Plant Pathology 69:1655−65 doi: 10.1111/ppa.13247
CrossRef Google Scholar
|
[17]
|
Pilet F, Chacón G, Forbes GA, Andrivon D. 2006. Protection of susceptible potato cultivars against late blight in mixtures increases with decreasing disease pressure. Phytopathology 96:777−83 doi: 10.1094/PHYTO-96-0777
CrossRef Google Scholar
|
[18]
|
Xu X. 2012. Super-races are not likely to dominate a fungal population within a life time of a perennial crop plantation of cultivar mixtures: a simulation study. BMC Ecology 12:16 doi: 10.1186/1472-6785-12-16
CrossRef Google Scholar
|
[19]
|
Ohtsuki A, Sasaki A. 2006. Epidemiology and disease-control under gene-for-gene plant–pathogen interaction. Journal of Theoretical Biology 238:780−94 doi: 10.1016/j.jtbi.2005.06.030
CrossRef Google Scholar
|
[20]
|
Mcdonald BA, Linde C. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology 40:349−79 doi: 10.1146/annurev.phyto.40.120501.101443
CrossRef Google Scholar
|
[21]
|
Mcdonald BA, Stukenbrock EH. 2016. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 371:20160026 doi: 10.1098/rstb.2016.0026
CrossRef Google Scholar
|
[22]
|
Dutta A, Croll D, McDonald BA, Barrett LG. 2021. Maintenance of variation in virulence and reproduction in populations of an agricultural plant pathogen. Evolutionary Applications 14:335−47 doi: 10.1111/eva.13117
CrossRef Google Scholar
|
[23]
|
Newton AC, Begg GS, Swanston JS. 2009. Deployment of diversity for enhanced crop function. Annals of Applied Biology 154:309−22 doi: 10.1111/j.1744-7348.2008.00303.x
CrossRef Google Scholar
|
[24]
|
MacHardy WE. 1996. Apple scab: biology, epidemiology, and management. Minnesota: The American Phytopathological Society Press. xvi, 545 pp.
|
[25]
|
Tronsmo AM, Collinge DB, Djurle A, Munk L, Yuen J, et al. 2020. Plant pathology and plant diseases. Boston, MA: CAB International. pp. 60−62.
|
[26]
|
Belete T, Boyraz N. 2017. Critical review on apple scab (Venturia inaequalis) biology, epidemiology, economic importance, management and defense mechanisms to the causal agent. Journal of Plant Physiology & Pathology 5:1000166
Google Scholar
|
[27]
|
Turechek WW. 2004. Apple diseases and their management. In Diseases of Fruits and Vegetables, ed. Naqvi SAMH. Volume I: xii, 691 pp. Dordrecht: Springer. pp. 1−108. https://doi.org/10.1007/1-4020-2606-4_1
|
[28]
|
Rancāne R, Valiuškaitė A, Stensvand A. 2023. Primary inoculum of Venturia inaequalis (Cooke) Wint. in its asexual form in apple – a review. Frontiers in Horticulture 2:1175956 doi: 10.3389/fhort.2023.1175956
CrossRef Google Scholar
|
[29]
|
Holb IJ. 2009. Fungal disease management in environmentally friendly apple production – a review. In Climate Change, Intercropping, Pest Control and Beneficial Microorganisms, ed. Lichtfouse E. Volume 2: x, 513. Dordrecht: Springer. pp 219–92. https://doi.org/10.1007/978-90-481-2716-0_10
|
[30]
|
Holb IJ, Kunz S. 2016. Integrated control of apple scab and powdery mildew in an organic apple orchard by combining potassium carbonates with wettable sulfur, pruning, and cultivar susceptibility. Plant Disease 100:1894−905 doi: 10.1094/PDIS-12-15-1416-RE
CrossRef Google Scholar
|
[31]
|
AHDB. 2022. Apple Best Practice Guide. https://horticulture.ahdb.org.uk/knowledge-library/apple-best-practice-guide.
|
[32]
|
MacHardy WE, Gadoury DM, Gessler C. 2001. Parasitic and biological fitness of Venturia inaequalis: relationship to disease management strategies. Plant Disease 85:1036−51 doi: 10.1094/PDIS.2001.85.10.1036
CrossRef Google Scholar
|
[33]
|
Hill SA. 1975. The importance of wood scab caused by Venturia inaequalis (cke.) wint. as a source of infection for apple leaves in the spring. Journal of Phytopathology 82:216−23 doi: 10.1111/j.1439-0434.1975.tb03486.x
CrossRef Google Scholar
|
[34]
|
Holb IJ, Heijne B, Jeger MJ. 2004. Overwintering of conidia of Venturia inaequalis and the contribution to early epidemics of apple scab. Plant Disease 88:751−57 doi: 10.1094/PDIS.2004.88.7.751
CrossRef Google Scholar
|
[35]
|
González-Domínguez E, Armengol J, Rossi V. 2017. Biology and epidemiology of Venturia species affecting fruit crops: a review. Frontiers in Plant Science 8:1496 doi: 10.3389/fpls.2017.01496
CrossRef Google Scholar
|
[36]
|
Agrios GN. 2004. Plant Pathology Fifth Edition. Amsterdam, NL: Elsevier. pp. 79−103
|
[37]
|
Bowen JK, Mesarich CH, Bus VGM, Beresford RM, Plummer KM, et al. 2011. Venturia inaequalis: the causal agent of apple scab. Molecular Plant Pathology 12:105−22 doi: 10.1111/j.1364-3703.2010.00656.x
CrossRef Google Scholar
|
[38]
|
MacHardy WE, Gadoury DM. 1989. A revision of Mills' s criteria for predicting apple scab infection periods. Phytopathology 79:304−10 doi: 10.1094/Phyto-79-304
CrossRef Google Scholar
|
[39]
|
Singh KP, Aravind T. 2021. Postharvest diseases and disorders of apple: perspectives for integrated management. In Postharvest Handling and Diseases of Horticultural Produce, eds. Singh D, Sharma RR, Devappa V, Kamil D. Boca Raton: CRC Press. pp 267–80. https://doi.org/10.1201/9781003045502-23
|
[40]
|
Fiaccadori R. 2018. In vitro, in vivo and in field sensitivity of Venturia inaequalis to anilinopyrimidine fungicides with different types of scab management and dfegree of control. Open Access Library Journal 05:e5092 doi: 10.4236/oalib.1105092
CrossRef Google Scholar
|
[41]
|
Philion V, Joubert V, Trapman M, Stensvand A. 2023. Physical modes of action of fungicides against apple scab: timing is everything, but dose matters. Plant Disease doi: 10.1094/PDIS-11-22-2758-RE
CrossRef Google Scholar
|
[42]
|
Chatzidimopoulos M, Lioliopoulou F, Sotiropoulos T, Vellios E. 2020. Efficient control of apple scab with targeted spray applications. Agronomy 10:217 doi: 10.3390/agronomy10020217
CrossRef Google Scholar
|
[43]
|
Berrie AM, Xu X. 2003. Managing apple scab (Venturia inaequalis) and powdery mildew (Podosphaera leucotricha) using AdemTM. International Journal of Pest Management 49:243−49 doi: 10.1080/0967087031000101089
CrossRef Google Scholar
|
[44]
|
Mills WD. 1944. Efficient use of sulfur dusts and sprays during rain to control apple scab. Cornell Extension Bulletin 630:1−4
Google Scholar
|
[45]
|
Holb IJ, Fazekas M, Abonyi F, Lakatos P, Thurzó S, et al. 2009. Effect of reduced spray programmes on incidences of apple scab, powdery mildew and codling moth damage in environmentally friendly apple production systems. International Journal of Horticultural Science 15:75−78 doi: 10.31421/ijhs/15/4/846
CrossRef Google Scholar
|
[46]
|
Wightwick A, Walters R, Allinson G, Reichman S, Menzies N. 2010. Environmental risks of fungicides used in horticultural production systems. In Fungicides, ed. Carisse O. 550 pp. London, UK: InTechOpen. pp 273–304. https://doi.org/10.5772/13032
|
[47]
|
Holb IJ, Jong PF, Heijne B. 2003. Efficacy and phytotoxicity of lime sulphur in organic apple production. Annals of Applied Biology 142:225−33 doi: 10.1111/j.1744-7348.2003.tb00245.x
CrossRef Google Scholar
|
[48]
|
Ebrahimi L, Fotuhifar KB, Javan Nikkhah M, Naghavi MR, Baisakh N. 2016. Population genetic structure of apple scab (Venturia inaequalis (cooke) G. winter) in Iran. PLoS ONE 11:e0160737 doi: 10.1371/journal.pone.0160737
CrossRef Google Scholar
|
[49]
|
Beckerman JL, Sundin GW, Rosenberger DA. 2015. Do some IPM concepts contribute to the development of fungicide resistance? Lessons learned from the apple scab pathosystem in the United States Pest Management Science 71:331−42 doi: 10.1002/ps.3715
CrossRef Google Scholar
|
[50]
|
Burr TJ, Matteson MC, Smith CA, Corral-Garcia MR, Huang TC. 1996. Effectiveness of bacteria and yeasts from apple orchards as biological control agents of apple scab. Biological Control 6:151−57 doi: 10.1006/bcon.1996.0019
CrossRef Google Scholar
|
[51]
|
Köhl J, Scheer C, Holb IJ, Masny S, Molhoek W. 2015. Toward an integrated use of biological control by Cladosporium cladosporioides H39 in apple scab (Venturia inaequalis) management. Plant Disease 99:535−43 doi: 10.1094/PDIS-08-14-0836-RE
CrossRef Google Scholar
|
[52]
|
Carisse O, Philion V, Rolland D, Bernier J. 2000. Effect of fall application of fungal antagonists on spring ascospore production of the apple scab pathogen, Venturia inaequalis. Phytopathology 90:31−37 doi: 10.1094/PHYTO.2000.90.1.31
CrossRef Google Scholar
|
[53]
|
Health and Safety Executive. 2022. Pesticide Register of Authorised Products. https://secure.pesticides.gov.uk/pestreg/default.asp
|
[54]
|
Carisse O, Dewdney M. 2002. A review of non-fungicidal approaches for the control of apple scab. Phytoprotection 83:1−29 doi: 10.7202/706226ar
CrossRef Google Scholar
|
[55]
|
Holb IJ, Heijne B, Jeger MJ. 2006. Effects of integrated control measures on earthworms, leaf litter and Venturia inaequalis infection in two European apple orchards. Agriculture, Ecosystems & Environment 114:287−95 doi: 10.1016/j.agee.2005.11.021
CrossRef Google Scholar
|
[56]
|
Majeed M, Bhat NA, Badri ZA, Yousuf V, Wani TA, et al. 2017. Non-chemical management of apple scab-a global perspective. International Journal of Environment, Agriculture and Biotechnology (IJEAB) 2:912−21 doi: 10.22161/ijeab/2.2.45
CrossRef Google Scholar
|
[57]
|
Holb IJ. 2005. Effect of pruning on apple scab in organic apple production. Plant Disease 89:611−18 doi: 10.1094/PD-89-0611
CrossRef Google Scholar
|
[58]
|
Holb IJ, Heijne B, Jeger MJ. 2005. The widespread occurrence of overwintered conidial inoculum of Venturia inaequalis on shoots and buds in organic and integrated apple orchards across the Netherlands. European Journal of Plant Pathology 111:157−68 doi: 10.1007/s10658-004-1883-z
CrossRef Google Scholar
|
[59]
|
Holb IJ, Heijne B, Withagen JCM, Jeger MJ. 2004. Dispersal of Venturia inaequalis ascospores and disease gradients from a defined inoculum source. Journal of Phytopathology 152:639−46 doi: 10.1111/j.1439-0434.2004.00910.x
CrossRef Google Scholar
|
[60]
|
Rademacher W. 2015. Plant growth regulators: backgrounds and uses in plant production. Journal of Plant Growth Regulation 34:845−72 doi: 10.1007/s00344-015-9541-6
CrossRef Google Scholar
|
[61]
|
Soriano JM, Madduri M, Schaart JG, van der Burgh A, van Kaauwen MPW, et al. 2014. Fine mapping of the gene Rvi18 (V25) for broad-spectrum resistance to apple scab, and development of a linked SSR marker suitable for marker-assisted breeding. Molecular Breeding 34:2021−32 doi: 10.1007/s11032-014-0159-3
CrossRef Google Scholar
|
[62]
|
Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L. 2006. Venturia inaequalis resistance in apple. Critical Reviews in Plant Sciences 25:473−503 doi: 10.1080/07352680601015975
CrossRef Google Scholar
|
[63]
|
Khajuria YP, Kaul S, Wani AA, Dhar MK. 2018. Genetics of resistance in apple against Venturia inaequalis (Wint.) Cke. Tree Genetics & Genomes 14:16 doi: 10.1007/s11295-018-1226-4
CrossRef Google Scholar
|
[64]
|
Bus VGM, Rikkerink EHA, Caffier V, Durel CE, Plummer KM. 2011. Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annual Review of Phytopathology 49:391−413 doi: 10.1146/annurev-phyto-072910-095339
CrossRef Google Scholar
|
[65]
|
Gessler C, Pertot I. 2012. Vf scab resistance of Malus. Trees 26:95−108 doi: 10.1007/s00468-011-0618-y
CrossRef Google Scholar
|
[66]
|
Patocchi A, Wehrli A, Dubuis PH, Auwerkerken A, Leida C, et al. 2020. Ten years of VINQUEST: first insight for breeding new apple cultivars with durable apple scab resistance. Plant Disease 104:2074−81 doi: 10.1094/PDIS-11-19-2473-SR
CrossRef Google Scholar
|
[67]
|
Soufflet-Freslon V, Gianfranceschi L, Patocchi A, Durel CE. 2008. Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL. Genome 51:657−68 doi: 10.1139/G08-046
CrossRef Google Scholar
|
[68]
|
Patocchi A, Bigler B, Koller B, Kellerhals M, Gessler C. 2004. Vr2: a new apple scab resistance gene. Theoretical and Applied Genetics 109:1087−92 doi: 10.1007/s00122-004-1723-8
CrossRef Google Scholar
|
[69]
|
Papp D, Gao L, Thapa R, Olmstead D, Khan A. 2020. Field apple scab susceptibility of a diverse Malus germplasm collection identifies potential sources of resistance for apple breeding. CABI Agriculture and Bioscience 1:16 doi: 10.1186/s43170-020-00017-4
CrossRef Google Scholar
|
[70]
|
Khan A, Korban SS. 2022. Breeding and genetics of disease resistance in temperate fruit trees: challenges and new opportunities. Theoretical and Applied Genetics 135:3961−85 doi: 10.1007/s00122-022-04093-0
CrossRef Google Scholar
|
[71]
|
Bus VGM, Bowen JK, Patocchi A, Broggini GAL, Kumar S, et al. 2019. Breeding fruit cultivars with durable disease resistance. In Integrated Management of Diseases and Insect Pests of Tree Fruit, eds. Xu X, Fountain M. Cambridge, UK: Burleigh Dodds Science Publishing. pp 233–74. https://doi.org/10.19103/as.2019.0046.12
|
[72]
|
van Nocker S, Gardiner SE. 2014. Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Horticulture Research 1:14022 doi: 10.1038/hortres.2014.22
CrossRef Google Scholar
|
[73]
|
Flachowsky H, Le Roux PM, Peil A, Patocchi A, Richter K, et al. 2011. Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytologist 192:364−77 doi: 10.1111/j.1469-8137.2011.03813.x
CrossRef Google Scholar
|
[74]
|
Abdul Fiyaz R, Ajay BC, Ramya KT, Aravind Kumar J, Sundaram RM, et al. 2020. Speed breeding: methods and applications. In Accelerated Plant Breeding, eds. Gosal SS, Wani SH. Volume 1: xv, 450. Switzerland: Springer Cham. pp 31–49. https://doi.org/10.1007/978-3-030-41866-3_2
|
[75]
|
United Kingdom of Great Britain and Northern Ireland. 2023. Genetic Technology (Precision Breeding) Act 2023. www.legislation.gov.uk/ukpga/2023/6/section/47/enacted
|
[76]
|
Passey TAJ, Shaw MW, Xu X. 2016. Differentiation in populations of the apple scab fungus Venturia inaequalis on cultivars in a mixed orchard remain over time. Plant Pathology 65:1133−41 doi: 10.1111/ppa.12492
CrossRef Google Scholar
|
[77]
|
Merwin IA, Valois S, Padilla-Zakour OI. 2008. Cider apples and cider-making techniques in Europe and North America. Horticultural Reviews 34:365−415 doi: 10.1002/9780470380147.ch6
CrossRef Google Scholar
|
[78]
|
Xu X, Harvey N, Roberts A, Barbara D. 2013. Population variation of apple scab (Venturia inaequalis) within mixed orchards in the UK. European Journal of Plant Pathology 135:97−104 doi: 10.1007/s10658-012-0068-4
CrossRef Google Scholar
|
[79]
|
Lindhout P. 2002. The perspectives of polygenic resistance in breeding for durable disease resistance. Euphytica 124:217−26 doi: 10.1023/A:1015686601404
CrossRef Google Scholar
|
[80]
|
Stuthman DD, Leonard KJ, Miller-Garvin J. 2007. Breeding crops for durable resistance to disease. Advances in Agronomy 95:319−67 doi: 10.1016/S0065-2113(07)95004-X
CrossRef Google Scholar
|
[81]
|
Barbara DJ, Roberts AL, Xu X. 2008. Virulence characteristics of apple scab (Venturia inaequalis) isolates from monoculture and mixed orchards. Plant Pathology 57:552−61 doi: 10.1111/j.1365-3059.2007.01781.x
CrossRef Google Scholar
|
[82]
|
Pariaud B, Ravigné V, Halkett F, Goyeau H, Carlier J, et al. 2009. Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathology 58:409−24 doi: 10.1111/j.1365-3059.2009.02039.x
CrossRef Google Scholar
|
[83]
|
Caffier V, Didelot F, Pumo B, Causeur D, Durel CE, et al. 2010. Aggressiveness of eight Venturia inaequalis isolates virulent or avirulent to the major resistance gene Rvi6 on a non-Rvi6 apple cultivar. Plant Pathology 59:1072−80 doi: 10.1111/j.1365-3059.2010.02345.x
CrossRef Google Scholar
|
[84]
|
Caffier V, Lasserre-Zuber P, Giraud M, Lascostes M, Stievenard R, et al. 2014. Erosion of quantitative host resistance in the apple × Venturia inaequalis pathosystem. Infection, Genetics and Evolution 27:481−89 doi: 10.1016/j.meegid.2014.02.003
CrossRef Google Scholar
|
[85]
|
Lê Van A, Caffier V, Lasserre-Zuber P, Chauveau A, Brunel D, et al. 2013. Differential selection pressures exerted by host resistance quantitative trait loci on a pathogen population: a case study in an apple × Venturia inaequalis pathosystem. New Phytologist 197:899−908 doi: 10.1111/nph.12086
CrossRef Google Scholar
|
[86]
|
Guérin F, Le Cam B. 2004. Breakdown of the scab resistance gene Vf in apple leads to a founder effect in populations of the fungal pathogen Venturia inaequalis. Phytopathology 94:364−69 doi: 10.1094/PHYTO.2004.94.4.364
CrossRef Google Scholar
|
[87]
|
Leroy T, Lemaire C, Dunemann F, Le Cam B. 2013. The genetic structure of a Venturia inaequalis population in a heterogeneous host population composed of different Malus species. BMC Evolutionary Biology 13:64 doi: 10.1186/1471-2148-13-64
CrossRef Google Scholar
|
[88]
|
Sierotzki H, Eggenschwiler M, Boillat O, McDermott JM, Gessler C. 1994. Detection of variation in virulence toward susceptible apple cultivars in natural populations of Venturia inaequalis. Phytopathology 84:1005−9 doi: 10.1094/Phyto-84-1005
CrossRef Google Scholar
|
[89]
|
Didelot F, Brun L, Parisi L. 2007. Effects of cultivar mixtures on scab control in apple orchards. Plant Pathology 56:1014−22 doi: 10.1111/j.1365-3059.2007.01695.x
CrossRef Google Scholar
|
[90]
|
Parisi L, Gros C, Combe F, Parveaud CE, Gomez C, et al. 2013. Impact of a cultivar mixture on scab, powdery mildew and rosy aphid in an organic apple orchard. Crop Protection 43:207−12 doi: 10.1016/j.cropro.2012.09.014
CrossRef Google Scholar
|
[91]
|
Gladieux P, Zhang X, Afoufa-Bastien D, Valdebenito Sanhueza RM, Sbaghi M, et al. 2008. On the origin and spread of the Scab disease of apple: out of Central Asia. PLoS ONE 3:e1455 doi: 10.1371/journal.pone.0001455
CrossRef Google Scholar
|
[92]
|
Leroy T, Le Cam B, Lemaire C. 2014. When virulence originates from non-agricultural hosts: new insights into plant breeding. Infection, Genetics and Evolution 27:521−29 doi: 10.1016/j.meegid.2013.12.022
CrossRef Google Scholar
|
[93]
|
Lê Van A, Gladieux P, Lemaire C, Cornille A, Giraud T, et al. 2012. Evolution of pathogenicity traits in the apple scab fungal pathogen in response to the domestication of its host. Evolutionary Applications 5:694−704 doi: 10.1111/j.1752-4571.2012.00246.x
CrossRef Google Scholar
|
[94]
|
Sierotzki H, Gessler C. 1998. Genetic analysis of a cross of two Venturia inaequalis strains that differ in virulence. Journal of Phytopathology 146:515−19 doi: 10.1111/j.1439-0434.1998.tb04613.x
CrossRef Google Scholar
|
[95]
|
Sierotzki H, Gessler C. 1998. Inheritance of virulence of Venturia inaequalis toward mains × domestica cultivars. Journal of Phytopathology 146:509−14 doi: 10.1111/j.1439-0434.1998.tb04612.x
CrossRef Google Scholar
|
[96]
|
Flor HH. 1956. The complementary genic systems in flax and flax rust. Advances in Genetics 8:29−54 doi: 10.1016/S0065-2660(08)60498-8
CrossRef Google Scholar
|
[97]
|
Passey TAJ, Robinson JD, Shaw MW, Xu X. 2017. The relative importance of conidia and ascospores as primary inoculum of Venturia inaequalis in a southeast England orchard. Plant Pathology 66:1445−51 doi: 10.1111/ppa.12686
CrossRef Google Scholar
|
[98]
|
Passey TAJ, Armitage AD, Sobczyk MK, Shaw MW, Xu X. 2020. Genomic sequencing indicates non-random mating of Venturia inaequalis in a mixed cultivar orchard. Plant Pathology 69:669−76 doi: 10.1111/ppa.13150
CrossRef Google Scholar
|
[99]
|
Lu Y, Lu R, Zhang Z. 2022. Development and preliminary evaluation of a new apple harvest assist and In-field sorting machine. Applied Engineering in Agriculture 38:23−35 doi: 10.13031/aea.14522
CrossRef Google Scholar
|
[100]
|
Verbiest R, Ruysen K, Vanwalleghem T, Demeester E, Kellens K. 2021. Automation and robotics in the cultivation of pome fruit: where do we stand today? Journal of Field Robotics 38:513−31 doi: 10.1002/rob.22000
CrossRef Google Scholar
|