[1]
|
Francini A, Sebastiani L. 2019. Abiotic stress effects on performance of horticultural crops. Horticulturae 5:67 doi: 10.3390/horticulturae5040067
CrossRef Google Scholar
|
[2]
|
Bulgari R, Franzoni G, Ferrante A. 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9:306 doi: 10.3390/agronomy9060306
CrossRef Google Scholar
|
[3]
|
Mangal V, Lal MK, Tiwari RK, Altaf MA, Sood S, et al. 2023. Molecular insights into the role of reactive oxygen, nitrogen and sulphur species in conferring salinity stress tolerance in plants. Journal of Plant Growth Regulation 42:554−74 doi: 10.1007/s00344-022-10591-8
CrossRef Google Scholar
|
[4]
|
Devi R, Behera B, Raza B, Mangal V, Altaf MA, et al. 2022. An insight into microbes mediated heavy metal detoxification in plants: a review. Journal of Soil Science and Plant Nutrition 22:914−36 doi: 10.1007/s42729-021-00702-x
CrossRef Google Scholar
|
[5]
|
Altaf MA, Shahid R, Ren M, Altaf MM, Jahan MS, et al. 2021. Melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. Journal of Soil Science and Plant Nutrition 21:1842−55 doi: 10.1007/s42729-021-00484-2
CrossRef Google Scholar
|
[6]
|
Wani SH, Kumar V, Shriram V, Sah SK. 2016. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal 4:162−76 doi: 10.1016/j.cj.2016.01.010
CrossRef Google Scholar
|
[7]
|
Altaf MA, Shahid R, Altaf MM, Kumar R, Naz S, et al. 2022. Melatonin: first-line soldier in tomato under abiotic stress current and future perspective. Plant Physiology and Biochemistry 185:188−97 doi: 10.1016/j.plaphy.2022.06.004
CrossRef Google Scholar
|
[8]
|
Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP. 2013. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Reports 32:945−57 doi: 10.1007/s00299-013-1461-y
CrossRef Google Scholar
|
[9]
|
Depuydt S, Hardtke CS. 2011. Hormone signalling crosstalk in plant growth regulation. Current Biology 21:R365−R373 doi: 10.1016/j.cub.2011.03.013
CrossRef Google Scholar
|
[10]
|
Jiang K, Asami T. 2018. Chemical regulators of plant hormones and their applications in basic research and agriculture. Bioscience, Biotechnology, and Biochemistry 82:1265−300 doi: 10.1080/09168451.2018.1462693
CrossRef Google Scholar
|
[11]
|
Saini S, Kaur N, Pati PK. 2021. Phytohormones: key players in the modulation of heavy metal stress tolerance in plants. Ecotoxicology and Environmental Safety 223:112578 doi: 10.1016/j.ecoenv.2021.112578
CrossRef Google Scholar
|
[12]
|
Salvi P, Manna M, Kaur H, Thakur T, Gandass N, et al. 2021. Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Reports 40:1305−29 doi: 10.1007/s00299-021-02683-8
CrossRef Google Scholar
|
[13]
|
Ku Y, Sintaha M, Cheung M, Lam H. 2018. Plant hormone signaling crosstalks between biotic and abiotic stress responses. International Journal of Molecular Sciences 19:3206 doi: 10.3390/ijms19103206
CrossRef Google Scholar
|
[14]
|
Ciura J, Kruk J. 2018. Phytohormones as targets for improving plant productivity and stress tolerance. Journal of Plant Physiology 229:32−40 doi: 10.1016/j.jplph.2018.06.013
CrossRef Google Scholar
|
[15]
|
Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S. 2020. Salicylic acid in relation to other phytohormones in plant: a study towards physiology and signal transduction under challenging environment. Environmental and Experimental Botany 175:104040 doi: 10.1016/j.envexpbot.2020.104040
CrossRef Google Scholar
|
[16]
|
Rao YR, Ansari MW, Singh AK, Bharti N, Rani V, et al. 2020. Ethylene mediated physiological response for in vitro development of salinity tolerant tomato. Journal of Plant Interactions 15:406−16 doi: 10.1080/17429145.2020.1820591
CrossRef Google Scholar
|
[17]
|
Feller U, Vaseva II. 2014. Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Frontiers in Environmental Science 2:39 doi: 10.3389/fenvs.2014.00039
CrossRef Google Scholar
|
[18]
|
Raftery AE, Zimmer A, Frierson DMW, Startz R, Liu P. 2017. Less than 2 °C warming by 2100 unlikely. Nature Climate Change 7:637−41 doi: 10.1038/nclimate3352
CrossRef Google Scholar
|
[19]
|
Cornforth JW, Milborrow BV, Ryback G, Wareing PF. 1965. Chemistry and physiology of 'dormins' in sycamore: Identity of sycamore 'dormin' with abscisin II. Nature 205:1269−70 doi: 10.1038/2051269b0
CrossRef Google Scholar
|
[20]
|
Guschina IA, Harwood JL, Smith M, Beckett RP. 2002. Abscisic acid modifies the changes in lipids brought about by water stress in the moss Atrichum androgynum. New Phytologist 156:255−64 doi: 10.1046/j.1469-8137.2002.00517.x
CrossRef Google Scholar
|
[21]
|
Danquah A, de Zelicourt A, Colcombet J, Hirt H. 2014. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology Advances 32:40−52 doi: 10.1016/j.biotechadv.2013.09.006
CrossRef Google Scholar
|
[22]
|
Peleg Z, Blumwald E. 2011. Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology 14:290−95 doi: 10.1016/j.pbi.2011.02.001
CrossRef Google Scholar
|
[23]
|
Arkhipova T, Martynenko E, Sharipova G, Kuzmina L, Ivanov I, et al. 2020. Effects of plant growth promoting rhizobacteria on the content of abscisic acid and salt resistance of wheat plants. Plants 9:1429 doi: 10.3390/plants9111429
CrossRef Google Scholar
|
[24]
|
Dar NA, Amin I, Wani W, Wani SA, Shikari AB, et al. 2017. Abscisic acid: a key regulator of abiotic stress tolerance in plants. Plant Gene 11:106−11 doi: 10.1016/j.plgene.2017.07.003
CrossRef Google Scholar
|
[25]
|
Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, et al. 2010. Abscisic acid and the control of seed dormancy and germination. Seed Science Research 20:55−67 doi: 10.1017/S0960258510000012
CrossRef Google Scholar
|
[26]
|
Xu ZY, Kim SY, Hyeon DY, Kim DH, Dong T, et al. 2013. The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. The Plant Cell 25:4708−24 doi: 10.1105/tpc.113.119099
CrossRef Google Scholar
|
[27]
|
Llanes A, Masciarelli O, Ordóñez R, Isla MI, Luna V. 2014. Differential growth responses to sodium salts involve different abscisic acid metabolism and transport in Prosopis strombulifera. Biologia Plantarum 58:80−88 doi: 10.1007/s10535-013-0365-6
CrossRef Google Scholar
|
[28]
|
He M, He C, Ding N. 2018. Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Frontiers in Plant Science 9:1771 doi: 10.3389/fpls.2018.01771
CrossRef Google Scholar
|
[29]
|
Ashraf M, Foolad MR. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59:206−16 doi: 10.1016/j.envexpbot.2005.12.006
CrossRef Google Scholar
|
[30]
|
Chen H, Chen X, Zheng Y. 2013. The nuclear lamina regulates germline stem cell niche organization via modulation of EGFR signaling. Cell Stem Cell 13:73−86 doi: 10.1016/j.stem.2013.05.003
CrossRef Google Scholar
|
[31]
|
Lee K, Lee HG, Yoon S, Kim HU, Seo PJ. 2015. The Arabidopsis MYB96 transcription factor is a positive regulator of ABSCISIC ACID-INSENSITIVE4 in the control of seed germination. Plant Physiology 168:677−89 doi: 10.1104/pp.15.00162
CrossRef Google Scholar
|
[32]
|
Hoque TS, Hossain MA, Mostofa MG, Burritt DJ, Fujita M, et al. 2016. Methylglyoxal: an emerging signaling molecule in plant abiotic stress responses and tolerance. Frontiers in Plant Science 7:1341 doi: 10.3389/fpls.2016.01341
CrossRef Google Scholar
|
[33]
|
Yin Y, Jiang X, Ren M, Xue M, Nan D, et al. 2018. AmDREB2C, from Ammopiptanthus mongolicus, enhances abiotic stress tolerance and regulates fatty acid composition in transgenic Arabidopsis. Plant Physiology and Biochemistry 130:517−28 doi: 10.1016/j.plaphy.2018.08.002
CrossRef Google Scholar
|
[34]
|
Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, et al. 2021. Crucial cell signaling compounds crosstalk and integrative multi-omics techniques for salinity stress tolerance in plants. Frontiers in Plant Science 12:670369 doi: 10.3389/fpls.2021.670369
CrossRef Google Scholar
|
[35]
|
Islam MS, Hasan K, Islam B, Renu NA, Hakim MA, et al. 2021. Responses of water and pigments status, dry matter partitioning, seed production, and traits of yield and quality to foliar application of GA3 in mungbean (Vigna radiata L.). Frontiers in Agronomy 2:596850 doi: 10.3389/fagro.2020.596850
CrossRef Google Scholar
|
[36]
|
Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annual Review of Plant Biology 59:225−51 doi: 10.1146/annurev.arplant.59.032607.092804
CrossRef Google Scholar
|
[37]
|
Pearce S, Huttly AK, Prosser IM, Li Y, Vaughan SP, et al. 2015. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. BMC Plant Biology 15:130 doi: https://doi.org/10.1186/s12870-015-0520-7
CrossRef Google Scholar
|
[38]
|
Hedden P, Thomas SG. 2012. Gibberellin biosynthesis and its regulation. Biochemical Journal 444:11−25 doi: 10.1042/BJ20120245
CrossRef Google Scholar
|
[39]
|
Lo SF, Ho THD, Liu YL, Jiang MJ, Hsieh KT, et al. 2017. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnology Journal 15:850−64 doi: 10.1111/pbi.12681
CrossRef Google Scholar
|
[40]
|
Mark C, Zór K, Heiskanen A, Dufva M, Emnéus J, et al. 2016. Monitoring intra-and extracellular redox capacity of intact barley aleurone layers responding to phytohormones. Analytical Biochemistry 515:1−8 doi: 10.1016/j.ab.2016.09.011
CrossRef Google Scholar
|
[41]
|
Liu Y, Huang W, Xian Z, Hu N, Lin D, et al. 2017. Overexpression of SlGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling. Frontiers in Plant Science 8:1659 doi: 10.3389/fpls.2017.01659
CrossRef Google Scholar
|
[42]
|
Sachs T. 2005. Auxin's role as an example of the mechanisms of shoot/root relations. Plant and Soil 268:13−19 doi: 10.1007/s11104-004-0173-z
CrossRef Google Scholar
|
[43]
|
Tromas A, Braun N, Muller P, Khodus T, Paponov IA, et al. 2009. The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth. PLoS ONE 4:e6648 doi: 10.1371/journal.pone.0006648
CrossRef Google Scholar
|
[44]
|
Jurado S, Abraham Z, Manzano C, López-Torrejón G, Pacios LF, et al. 2010. The Arabidopsis cell cycle F-box protein SKP2A binds to auxin. The Plant Cell 22:3891−904 doi: 10.1105/tpc.110.078972
CrossRef Google Scholar
|
[45]
|
Potters G, Pasternak TP, Guisez Y, Jansen MAK. 2009. Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant, Cell & Environment 32:158−69 doi: 10.1111/j.1365-3040.2008.01908.x
CrossRef Google Scholar
|
[46]
|
Tognetti VB, Mühlenbock P, Van Breusegem F. 2012. Stress homeostasis – the redox and auxin perspective. Plant, Cell & Environment 35:321−33 doi: 10.1111/j.1365-3040.2011.02324.x
CrossRef Google Scholar
|
[47]
|
Taiz L, Zeiger E, Møller IM, Murphy A. 2015. Plant physiology and development, Ed. 6. Sunderland: Sinauer Associates Incorporated. 761 pp.
|
[48]
|
Awan FK, Khurshid MY, Mehmood A. 2017. Plant growth regulators and their role in abiotic stress management. The International Journal of Innovative Research in Biosciences 1:9−22
Google Scholar
|
[49]
|
Shi Y, Tian S, Hou L, Huang X, Zhang X, et al. 2012. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. The Plant Cell 24:2578−95 doi: 10.1105/tpc.112.098640
CrossRef Google Scholar
|
[50]
|
Zhou M, Zhu B, Brüggemann N, Bergmann J, Wang Y, et al. 2014. N2O and CH4 emissions, and NO3− leaching on a crop-yield basis from a subtropical rain-fed wheat–maize rotation in response to different types of nitrogen fertilizer. Ecosystems 17:286−301 doi: 10.1007/s10021-013-9723-7
CrossRef Google Scholar
|
[51]
|
Yang C, Li W, Cao J, Meng F, Yu Y, et al. 2017. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. The Plant Journal 89:338−53 doi: 10.1111/tpj.13388
CrossRef Google Scholar
|
[52]
|
Abeles FB, Morgan PW, Saltveit ME Jr. 1992. Ethylene in plant biology (second edition). California: Academic Press. xv, 414 pp. https://doi.org/10.1016/C2009-0-03226-7
|
[53]
|
Kendrick MD, Chang C. 2008. Ethylene signaling: new levels of complexity and regulation. Current Opinion in Plant Biology 11:479−85 doi: 10.1016/j.pbi.2008.06.011
CrossRef Google Scholar
|
[54]
|
Maheshwari DK, Dheeman S, Agarwal M. 2015. Phytohormone-producing PGPR for sustainable agriculture. In Bacterial Metabolites in Sustainable Agroecosystem, Maheshwari DK, vol 12. Cham: Springer. pp. 159–82. https://doi.org/10.1007/978-3-319-24654-3_7
|
[55]
|
Yasir TA, Wasaya A. 2021. Brassinosteroids signaling pathways in plant defense and adaptation to stress. In Plant Growth Regulators: Signalling under Stress Conditions, eds. Aftab T, Hakeem KR. Cham: Springer. pp. 197–206. https://doi.org/10.1007/978-3-030-61153-8_9
|
[56]
|
Ullah A, Sun H, Hakim, Yang X, Zhang X. 2018. A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiologia Plantarum 162:439−54 doi: 10.1111/ppl.12651
CrossRef Google Scholar
|
[57]
|
Ali Mumtaz M, Hao Y, Mehmood S, Shu H, Zhou Y, et al. 2022. Physiological and transcriptomic analysis provide molecular Insight into 24-epibrassinolide mediated Cr(VI)-toxicity tolerance in pepper plants. Environmental Pollution 306:119375 doi: 10.1016/j.envpol.2022.119375
CrossRef Google Scholar
|
[58]
|
Ahammed GJ, Li X, Liu A, Chen S. 2020. Brassinosteroids in plant tolerance to abiotic stress. Journal of Plant Growth Regulation 39:1451−64 doi: 10.1007/s00344-020-10098-0
CrossRef Google Scholar
|
[59]
|
Upreti KK, Sharma M. 2016. Role of plant growth regulators in abiotic stress tolerance. In Abiotic Stress Physiology of Horticultural Crops, eds. Rao N, Shivashankara K, Laxman R. New Delhi: Springer. pp. 19–46. https://doi.org/10.1007/978-81-322-2725-0_2
|
[60]
|
Ding H, Zhu X, Zhu Z, Yang S, Zha D, et al. 2012. Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Plantarum 56:767−70 doi: 10.1007/s10535-012-0108-0
CrossRef Google Scholar
|
[61]
|
Karlidag H, Yildirim E, Turan M. 2011. Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria×ananassa). Scientia Horticulturae 130:133−40 doi: 10.1016/j.scienta.2011.06.025
CrossRef Google Scholar
|
[62]
|
Hu Y, Jiang L, Wang F, Yu D. 2013. Jasmonate regulates the INDUCER OF CBF EXPRESSION–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. The Plant Cell 25:2907−24 doi: 10.1105/tpc.113.112631
CrossRef Google Scholar
|
[63]
|
Kapoor D, Rattan A, Gautam V, Kapoor N, Bhardwaj R. 2014. 24-Epibrassinolide mediated changes in photosynthetic pigments and antioxidative defence system of radish seedlings under cadmium and mercury stress. Journal of Stress Physiology & Biochemistry 10:110−21
Google Scholar
|
[64]
|
Prakash V, Singh VP, Tripathi DK, Sharma S, Corpas FJ. 2021. Nitric oxide (NO) and salicylic acid (SA): a framework for their relationship in plant development under abiotic stress. Plant Biology 23:39−49 doi: 10.1111/plb.13246
CrossRef Google Scholar
|
[65]
|
Hernández JA, Diaz-Vivancos P, Barba-Espín G, Clemente-Moreno MJ. 2017. On the role of salicylic acid in plant responses to environmental stresses. In Salicylic Acid: A Multifaceted Hormone, eds. Nazar R, Iqbal N, Khan N. Singapore: Springer. pp. 17–34. https://doi.org/10.1007/978-981-10-6068-7_2
|
[66]
|
Miao Y, Luo X, Gao X, Wang W, Li B, et al. 2020. Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings. Scientia Horticulturae 272:109577 doi: 10.1016/j.scienta.2020.109577
CrossRef Google Scholar
|
[67]
|
Jahan MS, Guo S, Baloch AR, Sun J, Shu S, et al. 2020. Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicology and Environmental Safety 197:110593 doi: 10.1016/j.ecoenv.2020.110593
CrossRef Google Scholar
|
[68]
|
Li J, Qin M, Qiao X, Cheng Y, Li X, et al. 2017. A new insight into the evolution and functional divergence of SWEET transporters in Chinese white pear (Pyrus bretschneideri). Plant and Cell Physiology 58:839−50 doi: 10.1093/pcp/pcx025
CrossRef Google Scholar
|
[69]
|
Rehman H, Farooq M, Basra SMA, Afzal I. 2011. Hormonal priming with salicylic acid improves the emergence and early seedling growth in cucumber. Journal of Agriculture and Social Sciences 7:109−13
Google Scholar
|
[70]
|
da Silva Lobato AK, Barbosa MAM, Alsahli AA, Lima EJA, da Silva BRS. 2021. Exogenous salicylic acid alleviates the negative impacts on production components, biomass and gas exchange in tomato plants under water deficit improving redox status and anatomical responses. Physiologia Plantarum 172:869−84 doi: 10.1111/ppl.13329
CrossRef Google Scholar
|
[71]
|
Zhang J, Hu H, Xu C, Hu Y, Huang Y, et al. 2019. Cloning, subcellular localization and function verification of gibberellin 2-oxidase gene in walnut (Juglans regia). Scientia Silvae Sinicae 55:50−60 doi: 10.11707/j.1001-7488.20190206
CrossRef Google Scholar
|
[72]
|
Kaya C. 2021. Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system. Physiologia Plantarum 172:351−70 doi: 10.1111/ppl.13153
CrossRef Google Scholar
|
[73]
|
Zhao Y, Song C, Brummell DA, Qi S, Lin Q, et al. 2021. Jasmonic acid treatment alleviates chilling injury in peach fruit by promoting sugar and ethylene metabolism. Food Chemistry 338:128005 doi: 10.1016/j.foodchem.2020.128005
CrossRef Google Scholar
|
[74]
|
Kang G, Wang C, Sun G, Wang Z. 2003. Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environmental and Experimental Botany 50:9−15 doi: 10.1016/S0098-8472(02)00109-0
CrossRef Google Scholar
|
[75]
|
Santisree P, Jalli LCL, Bhatnagar-Mathur P, Sharma KK. 2020. Emerging roles of salicylic acid and jasmonates in plant abiotic stress responses. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives, eds. Roychoudhury A, Tripathi DK. UK: John Wiley & Sons Ltd. pp. 342−73. https://doi.org/10.1002/9781119552154.ch17
|
[76]
|
Mahdavian K, Ghorbanli M, Kalantari KM. 2008. Role of salicylic acid in regulating ultraviolet radiation-induced oxidative stress in pepper leaves. Russian Journal of Plant Physiology 55:560−63 doi: 10.1134/S1021443708040195
CrossRef Google Scholar
|
[77]
|
Shin H, Min K, Arora R. 2018. Exogenous salicylic acid improves freezing tolerance of spinach (Spinacia oleracea L.) leaves. Cryobiology 81:192−200 doi: 10.1016/j.cryobiol.2017.10.006
CrossRef Google Scholar
|
[78]
|
Dat JF, Lopez-Delgado H, Foyer CH, Scott IM. 2000. Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. Journal of Plant Physiology 156:659−65 doi: 10.1016/S0176-1617(00)80228-X
CrossRef Google Scholar
|
[79]
|
El-Esawi MA, Elansary HO, El-Shanhorey NA, Abdel-Hamid AME, Ali HM, et al. 2017. Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers in Physiology 8:716 doi: 10.3389/fphys.2017.00716
CrossRef Google Scholar
|
[80]
|
Embiale A, Hussein M, Husen A, Sahile S, Mohammed K. 2016. Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. Journal of Agronomy 15:45−57 doi: 10.3923/ja.2016.45.57
CrossRef Google Scholar
|
[81]
|
Ergin S, Gülen H, Kesici M, Turhan E, Ipek A, et al. 2016. Effects of high temperature stress on enzymatic and nonenzymaticantioxidants and proteins in strawberry plants. Turkish Journal of Agriculture and Forestry 40:908−17 doi: 10.3906/tar-1606-144
CrossRef Google Scholar
|
[82]
|
Yildirim E, Turan M, Guvenc I. 2008. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition 31:593−612 doi: 10.1080/01904160801895118
CrossRef Google Scholar
|
[83]
|
Chen F, Fang P, Zeng W, Ding Y, Zhuang Z, et al. 2020. Comparing transcriptome expression profiles to reveal the mechanisms of salt tolerance and exogenous glycine betaine mitigation in maize seedlings. PLoS ONE 15:e0233616 doi: 10.1371/journal.pone.0233616
CrossRef Google Scholar
|
[84]
|
Bereded Sheferie M. 2023. Effect of seed priming methods on seed quality of okra (Abelmoschus esculentus (L.) moench) genotypes. Advances in Agriculture 2023:3951752 doi: 10.1155/2023/3951752
CrossRef Google Scholar
|
[85]
|
Arnao MB, Hernández-Ruiz J. 2014. Melatonin: plant growth regulator and/or biostimulator during stress? Trends in Plant Science 19:789−97 doi: 10.1016/j.tplants.2014.07.006
CrossRef Google Scholar
|
[86]
|
Van Tassel DL. 1997. Identification and quantification of melatonin in higher plants. Berlin Heidelberg: Springer. pp. 86−97
|
[87]
|
Wu S, Wang Y, Zhang J, Gong X, Zhang Z, et al. 2021. Exogenous melatonin improves physiological characteristics and promotes growth of strawberry seedlings under cadmium stress. Horticultural Plant Journal 7:13−22 doi: 10.1016/j.hpj.2020.06.002
CrossRef Google Scholar
|
[88]
|
Jahan MS, Guo S, Sun J, Shu S, Wang Y, et al. 2021. Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiology and Biochemistry 167:309−20 doi: 10.1016/j.plaphy.2021.08.002
CrossRef Google Scholar
|
[89]
|
Li H, Chang J, Chen H, Wang Z, Gu X, et al. 2017. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Frontiers in Plant Science 8:295 doi: 10.3389/fpls.2017.00295
CrossRef Google Scholar
|
[90]
|
Wang J, Cao S, Wang L, Wang X, Jin P, et al. 2018. Effect of β-aminobutyric acid on disease resistance against Rhizopus rot in harvested peaches. Frontiers in Microbiology 9:1505 doi: 10.3389/fmicb.2018.01505
CrossRef Google Scholar
|
[91]
|
Zhang T, Shi Z, Zhang X, Zheng S, Wang J, et al. 2020. Alleviating effects of exogenous melatonin on salt stress in cucumber. Scientia Horticulturae 262:109070 doi: 10.1016/j.scienta.2019.109070
CrossRef Google Scholar
|
[92]
|
Korkmaz A, Hayaloglu AA, Atasoy AF. 2017. Evaluation of the volatile compounds of fresh ripened Capsicum annuum and its spice pepper (dried red pepper flakes and isot). LWT 84:842−50 doi: 10.1016/j.lwt.2017.06.058
CrossRef Google Scholar
|
[93]
|
Wei M, Wang H, Ma T, Ge Q, Fang Y, et al. 2021. Comprehensive utilization of thinned unripe fruits from horticultural crops. Foods 10:2043 doi: 10.3390/foods10092043
CrossRef Google Scholar
|
[94]
|
Wei Z, Li C, Gao T, Zhang Z, Liang B, et al. 2019. Melatonin increases the performance of Malus hupehensis after UV-B exposure. Plant Physiology and Biochemistry 139:630−41 doi: 10.1016/j.plaphy.2019.04.026
CrossRef Google Scholar
|
[95]
|
Liu D, Howell K. 2021. Community succession of the grapevine fungal microbiome in the annual growth cycle. Environmental Microbiology 23:1842−57 doi: 10.1111/1462-2920.15172
CrossRef Google Scholar
|
[96]
|
Zamani Z, Amiri H, Ismaili A. 2020. Improving drought stress tolerance in fenugreek (Trigonella foenum-graecum) by exogenous melatonin. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 154:643−55 doi: 10.1080/11263504.2019.1674398
CrossRef Google Scholar
|
[97]
|
Altaf MA, Shahid R, Kumar R, Altaf MM, Kumar A, et al. 2023. Phytohormones mediated modulation of abiotic stress tolerance and potential crosstalk in horticultural crops. Journal of Plant Growth Regulation 42:4724−50 doi: 10.1007/s00344-022-10812-0
CrossRef Google Scholar
|
[98]
|
Havlová M, Dobrev PI, Motyka V, Štorchová H, Libus J, et al. 2008. The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant, Cell & Environment 31:341−53 doi: 10.1111/j.1365-3040.2007.01766.x
CrossRef Google Scholar
|
[99]
|
Yu Y, Li Y, Yan Z, Duan X. 2022. The role of cytokinins in plant under salt stress. Journal of Plant Growth Regulation 41:2279−91 doi: 10.1007/s00344-021-10441-z
CrossRef Google Scholar
|
[100]
|
Vankova R, Gaudinova A, Dobrev P, Malbeck J, Haisel D, et al. 2010. Comparison of salinity and drought stress effects on abscisic acid metabolites activity of cytokinin oxidase/dehydrogenase and chlorophyll levels in radish audtabacco. Ecological Questions 14:99−100 doi: 10.12775/v10090-011-0028-1
CrossRef Google Scholar
|
[101]
|
Avanci NC, Luche DD, Goldman GH, Goldman MHS. 2010. Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genetics and Molecular Research 9:484−505 doi: 10.4238/vol9-1gmr754
CrossRef Google Scholar
|
[102]
|
Srivastava V, Mishra S, Chowdhary AA, Lhamo S, Mehrotra S. 2021. The γ-aminobutyric acid (GABA) towards abiotic stress tolerance. In Compatible Solutes Engineering for Crop Plants Facing Climate Change, eds. Wani SH, Gangola MP, Ramadoss BR. Cham: Springer. pp. 171–87. https://doi.org/10.1007/978-3-030-80674-3_7
|
[103]
|
Jin P, Zheng Y, Tang S, Rui H, Wang CY. 2009. A combination of hot air and methyl jasmonate vapor treatment alleviates chilling injury of peach fruit. Postharvest Biology and Technology 52:24−29 doi: 10.1016/j.postharvbio.2008.09.011
CrossRef Google Scholar
|
[104]
|
Manzoor MA, Cheng X, Li G, Su X, Abdullah M, et al. 2020. Gene structure, evolution and expression analysis of the P-ATPase gene family in Chinese pear (Pyrus bretschneideri). Computational Biology and Chemistry 88:107346 doi: 10.1016/j.compbiolchem.2020.107346
CrossRef Google Scholar
|
[105]
|
Ghaffari H, Tadayon MR, Nadeem M, Razmjoo J, Cheema M. 2020. Foliage applications of jasmonic acid modulate the antioxidant defense under water deficit growth in sugar beet. Spanish Journal of Agricultural Research 17:e0805 doi: 10.5424/sjar/2019174-15380
CrossRef Google Scholar
|
[106]
|
Sayyari M, Babalar M, Kalantari S, Martínez-Romero D, Guillén F, et al. 2011. Vapour treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates. Food Chemistry 124:964−70 doi: 10.1016/j.foodchem.2010.07.036
CrossRef Google Scholar
|
[107]
|
Jin J, Zhang H, Kong L, Gao G, Luo J. 2014. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Research 42:D1182−D1187 doi: 10.1093/nar/gkt1016
CrossRef Google Scholar
|
[108]
|
Kang SK, Motosugi H, Yonemori K, Sugiura A. 1998. Supercooling characteristics of some deciduous fruit trees as related to water movement within the bud. The Journal of Horticultural Science and Biotechnology 73:165−72 doi: 10.1080/14620316.1998.11510960
CrossRef Google Scholar
|
[109]
|
Yan Z, Chen J, Li X. 2013. Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicology and Environmental Safety 98:203−09 doi: 10.1016/j.ecoenv.2013.08.019
CrossRef Google Scholar
|
[110]
|
Faghih S, Ghobadi C, Zarei A. 2017. Response of strawberry plant cv. 'Camarosa' to salicylic acid and methyl jasmonate application under salt stress condition. Journal of Plant Growth Regulation 36:651−59 doi: 10.1007/s00344-017-9666-x
CrossRef Google Scholar
|
[111]
|
Ahmad P, Kumar A, Gupta A, Hu X, ul Rehman Hakeem K, et al. 2012. Polyamines: role in plants under abiotic stress. In Crop Production for Agricultural Improvement, eds. Ashraf M, Öztürk M, Ahmad M, Aksoy A. Dordrecht: Springer. pp. 491–512. https://doi.org/10.1007/978-94-007-4116-4_19
|
[112]
|
Cheng X, Li G, Ma C, Abdullah M, Zhang J, et al. 2019. Comprehensive genome-wide analysis of the pear (Pyrus bretschneideri) laccase gene (PbLAC) family and functional identification of PbLAC1 involved in lignin biosynthesis. PLoS ONE 14:e0210892 doi: 10.1371/journal.pone.0210892
CrossRef Google Scholar
|
[113]
|
Hussain SS, Ali M, Ahmad M, Siddique KH. 2011. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances 29:300−11 doi: 10.1016/j.biotechadv.2011.01.003
CrossRef Google Scholar
|
[114]
|
Hu X, Zhang Y, Shi Y, Zhang Z, Zou Z, et al. 2012. Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity–alkalinity mixed stress. Plant Physiology and Biochemistry 57:200−09 doi: 10.1016/j.plaphy.2012.05.015
CrossRef Google Scholar
|
[115]
|
Diao Q, Song Y, Qi H. 2015. Exogenous spermidine enhances chilling tolerance of tomato (Solanum lycopersicum L.) seedlings via involvement in polyamines metabolism and physiological parameter levels. Acta Physiologiae Plantarum 37:230 doi: 10.1007/s11738-015-1980-y
CrossRef Google Scholar
|
[116]
|
Zapata PJ, Serrano Ma, Pretel MT, Amorós A, Botella MÁ. 2004. Polyamines and ethylene changes during germination of different plant species under salinity. Plant Science 167:781−88 doi: 10.1016/j.plantsci.2004.05.014
CrossRef Google Scholar
|
[117]
|
Choudhary SP, Kanwar M, Bhardwaj R, Yu J, Tran LSP. 2012. Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7:e33210 doi: 10.1371/journal.pone.0033210
CrossRef Google Scholar
|
[118]
|
Wu J, Shu S, Li C, Sun J, Guo S. 2018. Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. Plant Physiology and Biochemistry 128:152−62 doi: 10.1016/j.plaphy.2018.05.002
CrossRef Google Scholar
|
[119]
|
Chen S, Liu Z, Cui J, Ding J, Xia X, et al. 2011. Alleviation of chilling-induced oxidative damage by salicylic acid pretreatment and related gene expression in eggplant seedlings. Plant Growth Regulation 65:101−08 doi: 10.1007/s10725-011-9579-9
CrossRef Google Scholar
|
[120]
|
Yiu JC, Juang LD, Fang DYT, Liu CW, Wu SJ. 2009. Exogenous putrescine reduces flooding-induced oxidative damage by increasing the antioxidant properties of Welsh onion. Scientia Horticulturae 120:306−14 doi: 10.1016/j.scienta.2008.11.020
CrossRef Google Scholar
|
[121]
|
Kapulnik Y, Koltai H. 2014. Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant Physiology 166:560−69 doi: 10.1104/pp.114.244939
CrossRef Google Scholar
|
[122]
|
van Zeijl A, Liu W, Xiao TT, Kohlen W, Yang W, et al. 2015. The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis. BMC Plant Biology 15:260 doi: 10.1186/s12870-015-0651-x
CrossRef Google Scholar
|
[123]
|
Pandey A, Sharma M, Pandey GK. 2016. Emerging roles of strigolactones in plant responses to stress and development. Frontiers in Plant Science 7:434 doi: 10.3389/fpls.2016.00434
CrossRef Google Scholar
|
[124]
|
Min Z, Li R, Chen L, Zhang Y, Li Z, et al. 2019. Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiology and Biochemistry 135:99−110 doi: 10.1016/j.plaphy.2018.11.037
CrossRef Google Scholar
|
[125]
|
Yang P, Wang Y, Li J, Bian Z. 2019. Effects of brassinosteroids on photosynthetic performance and nitrogen metabolism in pepper seedlings under chilling stress. Agronomy 9:839 doi: 10.3390/agronomy9120839
CrossRef Google Scholar
|
[126]
|
Cooper JW, Hu Y, Beyyoudh L, Yildiz Dasgan H, Kunert K, et al. 2018. Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant, Cell & Environment 41:1298−310 doi: 10.1111/pce.13147
CrossRef Google Scholar
|
[127]
|
Mayzlish-Gati E, LekKala SP, Resnick N, Wininger S, Bhattacharya C, et al. 2010. Strigolactones are positive regulators of light-harvesting genes in tomato. Journal of Experimental Botany 61:3129−36 doi: 10.1093/jxb/erq138
CrossRef Google Scholar
|
[128]
|
Santoro V, Schiavon M, Gresta F, Ertani A, Cardinale F, et al. 2020. Strigolactones control root system architecture and tip anatomy in Solanum lycopersicum L. plants under P starvation. Plants 9:612 doi: 10.3390/plants9050612
CrossRef Google Scholar
|
[129]
|
Omoarelojie LO, Kulkarni MG, Finnie JF, Pospíšil T, Strnad M, et al. 2020. Synthetic strigolactone (rac-GR24) alleviates the adverse effects of heat stress on seed germination and photosystem II function in lupine seedlings. Plant Physiology and Biochemistry 155:965−79 doi: 10.1016/j.plaphy.2020.07.043
CrossRef Google Scholar
|
[130]
|
Yamamoto T, Terakami S. 2016. Genomics of pear and other Rosaceae fruit trees. Breeding Science 66:148−59 doi: 10.1270/jsbbs.66.148
CrossRef Google Scholar
|
[131]
|
Bhoi A, Yadu B, Chandra J, Keshavkant S. 2021. Contribution of strigolactone in plant physiology, hormonal interaction and abiotic stresses. Planta 254:28 doi: 10.1007/s00425-021-03678-1
CrossRef Google Scholar
|
[132]
|
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. 2010. Abscisic acid: emergence of a core signaling network. Annual review of plant biology 61:651−679 doi: 10.1146/annurev-arplant-042809-112122
CrossRef Google Scholar
|
[133]
|
Sosnowski J, Truba M, Vasileva V. 2023. The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture 13:724 doi: 10.3390/agriculture13030724
CrossRef Google Scholar
|
[134]
|
Mkindi AG, Tembo Y, Mbega ER, Medvecky B, Kendal-Smith A, et al. 2019. Phytochemical analysis of Tephrosia vogelii across East Africa reveals three chemotypes that influence its use as a pesticidal plant. Plants 8:597 doi: 10.3390/plants8120597
CrossRef Google Scholar
|
[135]
|
Steffens B, Rasmussen A. 2016. The physiology of adventitious roots. Plant Physiology 170:603−17 doi: 10.1104/pp.15.01360
CrossRef Google Scholar
|
[136]
|
Gujjar RS, Supaibulwatana K. 2019. The mode of cytokinin functions assisting plant adaptations to osmotic stresses. Plants 8:542 doi: 10.3390/plants8120542
CrossRef Google Scholar
|
[137]
|
Singh A, Mehta S, Yadav S, Nagar G, Ghosh R, et al. 2022. How to cope with the challenges of environmental stresses in the era of global climate change: an update on ROS stave off in plants. International Journal of Molecular Sciences 23:1995 doi: 10.3390/ijms23041995
CrossRef Google Scholar
|
[138]
|
Napieraj N, Janicka M, Reda M. 2023. Interactions of polyamines and phytohormones in plant response to abiotic stress. Plants 12:1159 doi: 10.3390/plants12051159
CrossRef Google Scholar
|
[139]
|
Maffei ME, Mithöfer A, Boland W. 2007. Before gene expression: early events in plant–insect interaction. Trends in Plant Science 12:310−16 doi: 10.1016/j.tplants.2007.06.001
CrossRef Google Scholar
|
[140]
|
Wang M, Wang Y, Zhang Y, Li C, Gong S, et al. 2019. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Genes & Genomics 41:781−801 doi: 10.1007/s13258-019-00793-y
CrossRef Google Scholar
|
[141]
|
Miller JB, Zhang S, Kos P, Xiong H, Zhou K, et al. 2017. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angewandte Chemie 129:1079−83 doi: 10.1002/ange.201610209
CrossRef Google Scholar
|
[142]
|
Verma V, Ravindran P, Kumar PP. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology 16:86 doi: 10.1186/s12870-016-0771-y
CrossRef Google Scholar
|
[143]
|
Bari R, Jones JDG. 2009. Role of plant hormones in plant defence responses. Plant Molecular Biology 69:473−88 doi: 10.1007/s11103-008-9435-0
CrossRef Google Scholar
|
[144]
|
Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28:489−521 doi: 10.1146/annurev-cellbio-092910-154055
CrossRef Google Scholar
|
[145]
|
Tuteja N. 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology 428:419−38 doi: 10.1016/S0076-6879(07)28024-3
CrossRef Google Scholar
|
[146]
|
Zhang Y, Xu S, Yang S, Chen Y. 2015. Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma 252:911−24 doi: 10.1007/s00709-014-0732-y
CrossRef Google Scholar
|
[147]
|
Jiang C, Lv G, Ge J, He B, Zhang Z, et al. 2021. Genome-wide identification of the GATA transcription factor family and their expression patterns under temperature and salt stress in Aspergillus oryzae. AMB Express 11:56 doi: 10.1186/s13568-021-01212-w
CrossRef Google Scholar
|
[148]
|
Abd el-naby SKM, Abdelkhalek A, Baiea M, Amin O. 2020. Mitigation of heat stress effects on Washington navel orange by using melatonin, gibberellin and salicylic treatments. Plant Archives 20:3523−34
Google Scholar
|
[149]
|
Hu W, Zuo J, Hou X, Yan Y, Wei Y, et al. 2015. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Frontiers in Plant Science 6:742 doi: 10.3389/fpls.2015.00742
CrossRef Google Scholar
|
[150]
|
Mutlu S, Karadağoğlu Ö, Atici Ö, Nalbantoğlu B. 2013. Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biologia Plantarum 57:507−13 doi: 10.1007/s10535-013-0322-4
CrossRef Google Scholar
|
[151]
|
Alférez F, Sala JM, Sanchez-Ballesta MT, Mulas M, Lafuente MT, et al. 2005. A comparative study of the postharvest performance of an ABA-deficient mutant of oranges: I. physiological and quality aspects. Postharvest Biology and Technology 37:222−31 doi: 10.1016/j.postharvbio.2005.05.010
CrossRef Google Scholar
|
[152]
|
Ghorbani B, Pakkish Z, Khezri M. 2018. Nitric oxide increases antioxidant enzyme activity and reduces chilling injury in orange fruit during storage. New Zealand Journal of Crop and Horticultural Science 46:101−16 doi: 10.1080/01140671.2017.1345764
CrossRef Google Scholar
|
[153]
|
Yang J, Wang M, Zhou S, Xu B, Chen P, et al. 2022. The ABA receptor gene MdPYL9 confers tolerance to drought stress in transgenic apple (Malus domestica). Environmental and Experimental Botany 194:104695 doi: 10.1016/j.envexpbot.2021.104695
CrossRef Google Scholar
|
[154]
|
Pakkish Z, Ghorbani B, Najafzadeh R. 2019. Fruit quality and shelf life improvement of grape cv. Rish Baba using Brassinosteroid during cold storage. Journal of Food Measurement and Characterization 13:967−75 doi: 10.1007/s11694-018-0011-2
CrossRef Google Scholar
|
[155]
|
Mahouachi J, López-Climent MF, Gómez-Cadenas A. 2014. Hormonal and hydroxycinnamic acids profiles in banana leaves in response to various periods of water stress. The Scientific World Journal 2014:540962 doi: 10.1155/2014/540962
CrossRef Google Scholar
|
[156]
|
Samaan M, Abd El-Hamed Nasser M. 2020. Effect of spraying Paclobutrazol (PP333) on yield and fruit quality of Crimson seedless grape. Journal of Plant Production 11:1031−34
Google Scholar
|
[157]
|
Zaharah SS, Razi IM. 2009. Growth, stomata aperture, biochemical changes and branch anatomy in mango (Mangifera indica) cv. Chokanan in response to root restriction and water stress. Scientia Horticulturae 123:58−67 doi: 10.1016/j.scienta.2009.07.022
CrossRef Google Scholar
|
[158]
|
Gómez-Cadenas A, Mehouachi J, Tadeo FR, Primo-Millo E, Talon M. 2000. Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 210:636−43 doi: 10.1007/s004250050054
CrossRef Google Scholar
|
[159]
|
Xu F, Xi Z, Zhang H, Zhang C, Zhang Z. 2015. Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera 'Cabernet Sauvignon' berries during véraison. Plant Physiology and Biochemistry 94:197−208 doi: 10.1016/j.plaphy.2015.06.005
CrossRef Google Scholar
|
[160]
|
Arbona V, Gómez-Cadenas A. 2008. Hormonal modulation of citrus responses to flooding. Journal of Plant Growth Regulation 27:241−50 doi: 10.1007/s00344-008-9051-x
CrossRef Google Scholar
|
[161]
|
Ali M, Nassar M, Ebrahim E, Sherif H. 2020. Optimization of banana stem pulp to substitute softwood pulp for high quality paper. Egyptian Journal of Chemistry 64:1461−69
Google Scholar
|
[162]
|
Pedrosa AM, Martins CDPS, Gonçalves LP, Costa MGC. 2015. Late embryogenesis abundant (LEA) constitutes a large and diverse family of proteins involved in development and abiotic stress responses in sweet orange (Citrus sinensis L.Osb.). PLoS ONE 10:e0145785 doi: 10.1371/journal.pone.0145785
CrossRef Google Scholar
|
[163]
|
An J, Yao J, Xu R, You C, Wang X, et al. 2018. An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response. Physiologia Plantarum 164:279−89 doi: 10.1111/ppl.12724
CrossRef Google Scholar
|
[164]
|
Mahdavian K, Kalantari K, Ghorbanli M, Torkzade M. 2008. The effects of salicylic acid on pigment contents in ultraviolet radiation stressed pepper plants. Biologia Plantarum 52:170−72 doi: 10.1007/s10535-008-0037-0
CrossRef Google Scholar
|
[165]
|
Hajam MA, Hassan G, Parray EA, Wani M, Shabir A, et al. 2018. Transforming fruit production by plant growth regulators. Journal of Pharmacognosy and Phytochemistry 7:1613−17
Google Scholar
|
[166]
|
Wang Y, Chen Z, Jiang Y, Duan B, Xi Z. 2019. Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L.). Scientia Horticulturae 256:108596 doi: 10.1016/j.scienta.2019.108596
CrossRef Google Scholar
|
[167]
|
Mahmood M, Bidabadi SS, Ghobadi C, Gray DJ. 2012. Effect of methyl jasmonate treatments on alleviation of polyethylene glycol-mediated water stress in banana (Musa acuminata cv. 'Berangan', AAA) shoot tip cultures. Plant Growth Regulation 68:161−69 doi: 10.1007/s10725-012-9702-6
CrossRef Google Scholar
|
[168]
|
Wartinger A, Heilmeier H, Hartung W, Schulze ED. 1990. Daily and seasonal courses of leaf conductance and abscisic acid in the xylem sap of almond trees [Prunus dulcis (Miller) DA Webb] under desert conditions. New Phytologist 116:581−87 doi: 10.1111/j.1469-8137.1990.tb00542.x
CrossRef Google Scholar
|
[169]
|
Torres CA, Sepúlveda G, Kahlaoui B. 2017. Phytohormone interaction modulating fruit responses to photooxidative and heat stress on apple (Malus domestica Borkh.). Frontiers in Plant Science 8:2129 doi: 10.3389/fpls.2017.02129
CrossRef Google Scholar
|
[170]
|
Karlidag H, Yildirim E, Turan M. 2009. Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Scientia Agricola 66:180−87 doi: 10.1590/S0103-90162009000200006
CrossRef Google Scholar
|
[171]
|
Perin EC, da Silva Messias R, Borowski JM, Crizel RL, Schott IB, et al. 2019. ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chemistry 271:516−26 doi: 10.1016/j.foodchem.2018.07.213
CrossRef Google Scholar
|
[172]
|
Cheng X, Cai Y, Zhang J. 2019. Stone cell development in pear. In The Pear Genome, ed. Korban S. Cham: Springer. pp. 201–225. https://doi.org/10.1007/978-3-030-11048-2_11
|
[173]
|
Wang X, Chen X, Wang Q, Chen M, Liu X, et al. 2019. MdBZR1 and MdBZR1-2like transcription factors improves salt tolerance by regulating gibberellin biosynthesis in apple. Frontiers in Plant Science 10:1473 doi: 10.3389/fpls.2019.01473
CrossRef Google Scholar
|
[174]
|
Wang Y, Jiang H, Mao Z, Liu W, Jiang S, et al. 2021. Ethylene increases the cold tolerance of apple via the MdERF1B–MdCIbHLH1 regulatory module. The Plant Journal 106:379−93 doi: 10.1111/tpj.15170
CrossRef Google Scholar
|
[175]
|
Jackson MB, Young SF, Hall KC. 1988. Are roots a source of abscisic acid for the shoots of flooded pea plants? Journal of Experimental Botany 39:1631−37 doi: 10.1093/jxb/39.12.1631
CrossRef Google Scholar
|
[176]
|
Shi M, Xie D. 2014. Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Patents on Biotechnology 8:47−60 doi: 10.2174/1872208307666131218123538
CrossRef Google Scholar
|
[177]
|
Lan Y, Han Z, Xu X. 2004. Accumulation of jasmonic acid in apple seedlings under water stress. Acta Horticulturae Sinica 31:16−20 doi: 10.3321/j.issn:0513-353X.2004.01.004
CrossRef Google Scholar
|
[178]
|
Wang X, Du G, Lu X, Ma H, Lyu D, et al. 2019. Characteristics of mitochondrial membrane functions and antioxidant enzyme activities in strawberry roots under exogenous phenolic acid stress. Scientia Horticulturae 248:89−97 doi: 10.1016/j.scienta.2018.12.051
CrossRef Google Scholar
|
[179]
|
Kumari S, Thakur A. 2018. The effects of water stress and brassinosteroid on apple varieties. International Journal of Economic Plants 6:1−6 doi: 10.23910/IJEP/2019.6.1.0278
CrossRef Google Scholar
|