[1]
|
Raghothama KG, Karthikeyan AS. 2005. Phosphate acquisition. Plant and Soil 274:37−49 doi: 10.1007/s11104-004-2005-6
CrossRef Google Scholar
|
[2]
|
Wissuwa M. 2003. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects Plant Physiology 133:1947−58 doi: 10.1104/pp.103.029306
CrossRef Google Scholar
|
[3]
|
Vance CP, Uhde-Stone C, Allan DL. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157:423−47 doi: 10.1046/j.1469-8137.2003.00695.x
CrossRef Google Scholar
|
[4]
|
Zhu J, Li M, Whelan M. 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Science of The Total Environment 612:522−37 doi: 10.1016/j.scitotenv.2017.08.095
CrossRef Google Scholar
|
[5]
|
Shen J, Yuan L, Zhang J, Li H, Bai Z, et al. 2011. Phosphorus dynamics: from soil to plant. Plant Physiology 156:997−1005 doi: 10.1104/pp.111.175232
CrossRef Google Scholar
|
[6]
|
Menezes-Blackburn D, Giles C, Darch T, George TS, Blackwell M, et al. 2018. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant and Soil 427:5−16 doi: 10.1007/s11104-017-3362-2
CrossRef Google Scholar
|
[7]
|
Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, et al. 2012. Closing yield gaps through nutrient and water management. Nature 490:254−57 doi: 10.1038/nature11420
CrossRef Google Scholar
|
[8]
|
Péret B, Clément M, Nussaume L, Desnos T. 2011. Root developmental adaptation to phosphate starvation: better safe than sorry. Trends in Plant Science 16:442−50 doi: 10.1016/j.tplants.2011.05.006
CrossRef Google Scholar
|
[9]
|
Zhang Z, Liao H, Lucas WJ. 2014. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. Journal of Integrative Plant Biology 56:192−220 doi: 10.1111/jipb.12163
CrossRef Google Scholar
|
[10]
|
Chiou TJ, Lin SI. 2011. Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology 62:185−206 doi: 10.1146/annurev-arplant-042110-103849
CrossRef Google Scholar
|
[11]
|
Abel S. 2017. Phosphate scouting by root tips. Current Opinion in Plant Biology 39:168−77 doi: 10.1016/j.pbi.2017.04.016
CrossRef Google Scholar
|
[12]
|
Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, et al. 2003. A gene expression map of the Arabidopsis root. Science 302:1956−60 doi: 10.1126/science.1090022
CrossRef Google Scholar
|
[13]
|
Abel S. 2011. Phosphate sensing in root development. Current Opinion in Plant Biology 14:303−9 doi: 10.1016/j.pbi.2011.04.007
CrossRef Google Scholar
|
[14]
|
Ticconi CA, Abel S. 2004. Short on phosphate: plant surveillance and countermeasures. Trends in Plant Science 9:548−55 doi: 10.1016/j.tplants.2004.09.003
CrossRef Google Scholar
|
[15]
|
Harrison MJ, Dewbre GR, Liu J. 2002. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. The Plant Cell 14:2413−29 doi: 10.1105/tpc.004861
CrossRef Google Scholar
|
[16]
|
Rausch C, Bucher M. 2002. Molecular mechanisms of phosphate transport in plants. Planta 216:23−37 doi: 10.1007/s00425-002-0921-3
CrossRef Google Scholar
|
[17]
|
Muchhal US, Pardo JM, Raghothama KG. 1996. Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 93:10519−23 doi: 10.1073/pnas.93.19.10519
CrossRef Google Scholar
|
[18]
|
Spain BH, Koo D, Ramakrishnan M, Dzudzor B, Colicelli J. 1995. Truncated forms of a novel yeast protein suppress the lethality of a G protein alpha subunit deficiency by interacting with the β subunit. Journal of Biological Chemistry 270:25435−44 doi: 10.1074/jbc.270.43.25435
CrossRef Google Scholar
|
[19]
|
Lenburg ME, O'Shea EK. 1996. Signaling phosphate starvation. Trends in Biochemical Sciences 21:383−87 doi: 10.1016/S0968-0004(96)10048-7
CrossRef Google Scholar
|
[20]
|
Battini JL, Rasko JEJ, Miller AD. 1999. A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. Proceedings of the National Academy of Sciences of the United States of America 96:1385−90 doi: 10.1073/pnas.96.4.1385
CrossRef Google Scholar
|
[21]
|
Wang Y, Ribot C, Rezzonico E, Poirier Y. 2004. Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Physiology 135:400−11 doi: 10.1104/pp.103.037945
CrossRef Google Scholar
|
[22]
|
Secco D, Wang C, Arpat BA, Wang Z, Poirier Y, et al. 2012. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. New Phytologist 193:842−51 doi: 10.1111/j.1469-8137.2011.04002.x
CrossRef Google Scholar
|
[23]
|
Gu M, Chen A, Sun S, Xu G. 2016. Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: what is missing? Molecular Plant 9:396−416 doi: 10.1016/j.molp.2015.12.012
CrossRef Google Scholar
|
[24]
|
Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, et al. 2001. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & Development 15:2122−33 doi: 10.1101/gad.204401
CrossRef Google Scholar
|
[25]
|
Devaiah BN, Madhuvanthi R, Karthikeyan AS, Raghothama KG. 2009. Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Molecular Plant 2:43−58 doi: 10.1093/mp/ssn081
CrossRef Google Scholar
|
[26]
|
Chu CH, Chang LC, Hsu HM, Wei SY, Liu HW, et al. 2011. A highly organized structure mediating nuclear localization of a Myb2 transcription factor in the protozoan parasite Trichomonas vaginalis. Eukaryotic Cell 10:1607−17 doi: 10.1128/EC.05177-11
CrossRef Google Scholar
|
[27]
|
Gu M, Zhang J, Li H, Meng D, Li R, et al. 2017. Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice. Journal of Experimental Botany 68:3603−15 doi: 10.1093/jxb/erx174
CrossRef Google Scholar
|
[28]
|
Devaiah BN, Karthikeyan AS, Raghothama KG. 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology 143:1789−801 doi: 10.1104/pp.106.093971
CrossRef Google Scholar
|
[29]
|
Chen ZH, Jenkins GI, Nimmo HG. 2008. Identification of an F-box protein that negatively regulates Pi starvation responses. Plant and Cell Physiology 49:1902−6 doi: 10.1093/pcp/pcn157
CrossRef Google Scholar
|
[30]
|
Devaiah BN, Nagarajan VK, Raghothama KG. 2007. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiology 145:147−59 doi: 10.1104/pp.107.101691
CrossRef Google Scholar
|
[31]
|
Shen C, Wang S, Zhang S, Xu Y, Qian Q, et al. 2013. OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.). Plant, Cell & Environment 36:607−20 doi: 10.1111/pce.12001
CrossRef Google Scholar
|
[32]
|
Chiasson DM, Loughlin PC, Mazurkiewicz D, Mohammadidehcheshmeh M, Fedorova EE, et al. 2014. Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport. Proceedings of the National Academy of Sciences of the United States of America 111:4814−19 doi: 10.1073/pnas.1312801111
CrossRef Google Scholar
|
[33]
|
Li T, Feng Z, Zhu B, Li M, Li G, et al. 2022. Functional identification of bHLH transcription factor MdSAT1 in the ammonium response. Fruit Research 2:17 doi: 10.48130/frures-2022-0017
CrossRef Google Scholar
|
[34]
|
Arnon DI, Stout PR, Sipos F. 1940. Radioactive phosphorus as an indicator of phosphorus absorption of tomato fruits at various stages of development. American Journal of Botany 27:791−98 doi: 10.1002/j.1537-2197.1940.tb10952.x
CrossRef Google Scholar
|
[35]
|
Bonser AM, Lynch J, Snapp S. 1996. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytologist 132:281−88 doi: 10.1111/j.1469-8137.1996.tb01847.x
CrossRef Google Scholar
|
[36]
|
Dhar N, Caruana J, Erdem I, Subbarao KV, Klosterman SJ, et al. 2020. The Arabidopsis SENESCENCE-ASSOCIATED GENE 13 regulates dark-induced senescence and plays contrasting roles in defense against bacterial and fungal pathogens. Molecular Plant-Microbe Interactions 33:754−66 doi: 10.1094/MPMI-11-19-0329-R
CrossRef Google Scholar
|
[37]
|
Hörtensteiner S. 2006. Chlorophyll degradation during senescence. Annual Review of Plant Biology 57:55−77 doi: 10.1146/annurev.arplant.57.032905.105212
CrossRef Google Scholar
|
[38]
|
Shi J, Zhao B, Zheng S, Zhang X, Wang X, et al. 2021. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184:5527−5540.e18 doi: 10.1016/j.cell.2021.09.030
CrossRef Google Scholar
|
[39]
|
Alori ET, Glick BR, Babalola OO. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology 8:971 doi: 10.3389/fmicb.2017.00971
CrossRef Google Scholar
|
[40]
|
Sun L, Song L, Zhang Y, Zheng Z, Liu D. 2016. Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation. Plant Physiology 170:499−514 doi: 10.1104/pp.15.01336
CrossRef Google Scholar
|
[41]
|
Yi K, Wu Z, Zhou J, Du L, Guo L, et al. 2005. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiology 138:2087−96 doi: 10.1104/pp.105.063115
CrossRef Google Scholar
|
[42]
|
Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO. 2001. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology 126:875−82 doi: 10.1104/pp.126.2.875
CrossRef Google Scholar
|
[43]
|
Yang Y, Zheng P, Ren Y, Yao Y, You C, et al. 2021. Apple MdSAT1 encodes a bHLHm1 transcription factor involved in salinity and drought responses. Planta 253:46 doi: 10.1007/s00425-020-03528-6
CrossRef Google Scholar
|
[44]
|
Tao S, Zhang Y, Wang X, Xu L, Fang X, et al. 2016. The THO/TREX complex active in miRNA biogenesis negatively regulates root-associated acid phosphatase activity induced by phosphate starvation. Plant Physiology 171:2841−53 doi: 10.1104/pp.16.00680
CrossRef Google Scholar
|
[45]
|
Wasaki J, Yamamura T, Shinano T, Osaki M. 2003. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant and Soil 248:129−36 doi: 10.1023/A:1022332320384
CrossRef Google Scholar
|
[46]
|
González E, Solano R, Rubio V, Leyva A, Paz-Ares J. 2005. PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. The Plant Cell 17:3500−12 doi: 10.1105/tpc.105.036640
CrossRef Google Scholar
|
[47]
|
Mazurkiewicz D. 2014 Characterisation of a novel family of eukaryotic ammonium transport proteins. Doctoral Dissertation. The University of Adelaide, Adelaide.
|
[48]
|
Tsuji H, Taoka KI, Shimamoto K. 2011. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Current Opinion in Plant Biology 14:45−52 doi: 10.1016/j.pbi.2010.08.016
CrossRef Google Scholar
|
[49]
|
Mouradov A, Cremer F, Coupland G. 2002. Control of flowering time: interacting pathways as a basis for diversity. The Plant Cell 14:S111−S130 doi: 10.1105/tpc.001362
CrossRef Google Scholar
|
[50]
|
Gan S, Amasino RM. 1997. Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiology 113:313−19 doi: 10.1104/pp.113.2.313
CrossRef Google Scholar
|
[51]
|
Lim PO, Kim HJ, Nam HG. 2007. Leaf senescence. Annual Review of Plant Biology 58:115−36 doi: 10.1146/annurev.arplant.57.032905.105316
CrossRef Google Scholar
|
[52]
|
Woo HR, Kim HJ, Nam HG, Lim PO. 2013. Plant leaf senescence and death – regulation by multiple layers of control and implications for aging in general. Journal of Cell Science 126:4823−33 doi: 10.1242/jcs.109116
CrossRef Google Scholar
|
[53]
|
Balemi T, Negisho K. 2012. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. Journal of Soil Science and Plant Nutrition 12:547−62 doi: 10.4067/s0718-95162012005000015
CrossRef Google Scholar
|
[54]
|
An J, Li H, Song L, Su L, Liu X, et al. 2016. The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiology and Biochemistry 108:24−31 doi: 10.1016/j.plaphy.2016.06.032
CrossRef Google Scholar
|
[55]
|
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43 doi: 10.1046/j.1365-313x.1998.00343.x
CrossRef Google Scholar
|
[56]
|
Zhou L, Zhang C, Zhang R, Wang G, Li Y, et al. 2019. The SUMO E3 ligase MdSIZ1 targets MdbHLH104 to regulate plasma membrane H+-ATPase activity and iron homeostasis. Plant Physiology 179:88−106 doi: 10.1104/pp.18.00289
CrossRef Google Scholar
|
[57]
|
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262
CrossRef Google Scholar
|
[58]
|
Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK. 2005. A miRNA involved in phosphate-starvation response in Arabidopsis. Current Biology 15:2038−43 doi: 10.1016/j.cub.2005.10.016
CrossRef Google Scholar
|
[59]
|
Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA. 2002. GLK gene pairs regulate chloroplast development in diverse plant species. The Plant Journal 31:713−27 doi: 10.1046/j.1365-313X.2002.01390.x
CrossRef Google Scholar
|
[60]
|
Sakuraba Y, Kim D, Han SH, Kim SH, Piao W, et al. 2020. Multilayered regulation of membrane-bound ONAC054 is essential for abscisic acid-induced leaf senescence in rice. The Plant Cell 32:630−49 doi: 10.1105/tpc.19.00569
CrossRef Google Scholar
|
[61]
|
Lee SH, Sakuraba Y, Lee T, Kim KW, An G, et al. 2015. Mutation of Oryza sativa CORONATINE INSENSITIVE 1b (OsCOI1b) delays leaf senescence. Journal of Integrative Plant Biology 57:562−76 doi: 10.1111/jipb.12276
CrossRef Google Scholar
|
[62]
|
Feng Z, Li T, Wang X, Sun W, Zhang T, et al. 2022. Identification and characterization of apple MdNLP7 transcription factor in the nitrate response. Plant Science 316:111158 doi: 10.1016/j.plantsci.2021.111158
CrossRef Google Scholar
|