[1]
|
Lightbourn GJ, Griesbach RJ, Novotny JA, Clevidence BA, Rao DD, et al. 2008. Effects of anthocyanin and carotenoid combinations on foliage and immature fruit color of Capsicum annuum L. Journal of Heredity 99:105−11 doi: 10.1093/jhered/esm108
CrossRef Google Scholar
|
[2]
|
Sass-Kiss A, Kiss J, Milotay P, Kerek MM, Toth-Markus M. 2005. Differences in anthocyanin and carotenoid content of fruits and vegetables. Food Research International 38:1023−29 doi: 10.1016/j.foodres.2005.03.014
CrossRef Google Scholar
|
[3]
|
He J, Giusti MM. 2010. Anthocyanins: natural colorants with health-promoting properties. Annual Review of Food Science and Technology 1:163−87 doi: 10.1146/annurev.food.080708.100754
CrossRef Google Scholar
|
[4]
|
Tena N, Martín J, Asuero AG. 2020. State of the art of anthocyanins: antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 9:451 doi: 10.3390/antiox9050451
CrossRef Google Scholar
|
[5]
|
Rahim A, Busatto N, Trainotti L. 2014. Regulation of anthocyanin biosynthesis in peach fruits. Planta 240:913−29 doi: 10.1007/s00425-014-2078-2
CrossRef Google Scholar
|
[6]
|
Cheng J, Liao L, Zhou H, Gu C, Wang L, et al. 2015. A small indel mutation in an anthocyanin transporter causes variegated colouration of peach flowers. Journal of Experimental Botany 66:7227−39 doi: 10.1093/jxb/erv419
CrossRef Google Scholar
|
[7]
|
Zhao Y, Min T, Chen M, Wang H, Zhu C, et al. 2020. The photomorphogenic transcription factor PpHY5 regulates anthocyanin accumulation in response to UVA and UVB irradiation. Frontiers in Plant Science 11:603178 doi: 10.3389/fpls.2020.603178
CrossRef Google Scholar
|
[8]
|
Zhao Y, Dong W, Zhu Y, Allan AC, Lin-Wang K, et al. 2020. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnology Journal 18:1284−95 doi: 10.1111/pbi.13291
CrossRef Google Scholar
|
[9]
|
Lu Z, Cao H, Pan L, Niu L, Wei B, et al. 2021. Two loss-of-function alleles of the glutathione S-transferase (GST) gene cause anthocyanin deficiency in flower and fruit skin of peach (Prunus persica). The Plant Journal 107:1320−31 doi: 10.1111/tpj.15312
CrossRef Google Scholar
|
[10]
|
Sylvia C, Sun J, Zhang Y, Ntini C, Ogutu C, et al. 2023. Genome-wide analysis of ATP binding cassette (ABC) transporters in Peach (Prunus persica) and identification of a gene PpABCC1 involved in anthocyanin accumulation. International Journal of Molecular Sciences 24:1931 doi: 10.3390/ijms24031931
CrossRef Google Scholar
|
[11]
|
Petroni K, Tonelli C. 2011. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science 181:219−29 doi: 10.1016/j.plantsci.2011.05.009
CrossRef Google Scholar
|
[12]
|
Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science 20:176−85 doi: 10.1016/j.tplants.2014.12.001
CrossRef Google Scholar
|
[13]
|
Zhou H, Liao L, Xu S, Ren F, Zhao J, et al. 2018. Two amino acid changes in the R3 repeat cause functional divergence of two clustered MYB10 genes in peach. Plant Molecular Biology 98:169−83 doi: 10.1007/s11103-018-0773-2
CrossRef Google Scholar
|
[14]
|
Zhou H, Lin-Wang K, Wang H, Gu C, Dare AP, et al. 2015. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal 82:105−21 doi: 10.1111/tpj.12792
CrossRef Google Scholar
|
[15]
|
Zhao L, Sun J, Cai Y, Yang Q, Zhang Y, et al. 2022. PpHYH is responsible for light-induced anthocyanin accumulation in fruit peel of Prunus persica. Tree Physiology 42:1662−77 doi: 10.1093/treephys/tpac025
CrossRef Google Scholar
|
[16]
|
Zhao L, Zhang Y, Sun J, Yang Q, Cai Y, et al. 2023. PpHY5 is involved in anthocyanin coloration in the peach flesh surrounding the stone. The Plant Journal 114:951−64 doi: 10.1111/tpj.16189
CrossRef Google Scholar
|
[17]
|
Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, et al. 2006. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology 142:1216−32 doi: 10.1104/pp.106.088104
CrossRef Google Scholar
|
[18]
|
Bai S, Tao R, Tang Y, Yin L, Ma Y, et al. 2019. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnology Journal 17:1985−97 doi: 10.1111/pbi.13114
CrossRef Google Scholar
|
[19]
|
Li Y, Xu P, Chen G, Wu J, Liu Z, et al. 2020. FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5-bHLH9 transcription complex in strawberry fruits. Plant and Cell Physiology 61:826−37 doi: 10.1093/pcp/pcaa010
CrossRef Google Scholar
|
[20]
|
Ni J, Bai S, Zhao Y, Qian M, Tao R, et al. 2019. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in 'Red Zaosu' pear fruits by interacting with MYB114. Plant Molecular Biology 99:67−78 doi: 10.1007/s11103-018-0802-1
CrossRef Google Scholar
|
[21]
|
Tao R, Bai S, Ni J, Yang Q, Zhao Y, et al. 2018. The blue light signal transduction pathway is involved in anthocyanin accumulation in 'Red Zaosu' pear. Planta 248:37−48 doi: 10.1007/s00425-018-2877-y
CrossRef Google Scholar
|
[22]
|
Hu J, Fang H, Wang J, Yue X, Su M, et al. 2020. Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin synthesis in apple. Plant Science 292:110377 doi: 10.1016/j.plantsci.2019.110377
CrossRef Google Scholar
|
[23]
|
An J, Wang X, Zhang X, Bi S, You C, et al. 2019. MdBBX22 regulates UV-B-induced anthocyanin biosynthesis through regulating the function of MdHY5 and is targeted by MdBT2 for 26S proteasome-mediated degradation. Plant Biotechnology Journal 17:2231−33 doi: 10.1111/pbi.13196
CrossRef Google Scholar
|
[24]
|
Zhou D, Li R, Zhang H, Chen S, Tu K. 2020. Hot air and UV-C treatments promote anthocyanin accumulation in peach fruit through their regulations of sugars and organic acids. Food Chemistry 309:125726 doi: 10.1016/j.foodchem.2019.125726
CrossRef Google Scholar
|
[25]
|
Tong Z, Gao Z, Wang F, Zhou J, Zhang Z. 2009. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology 10:71 doi: 10.1186/1471-2199-10-71
CrossRef Google Scholar
|
[26]
|
Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, et al. 2013. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics 45:487−94 doi: 10.1038/ng.2586
CrossRef Google Scholar
|
[27]
|
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009
CrossRef Google Scholar
|
[28]
|
Shen S, Park JW, Lu ZX, Lin L, Henry MD, et al. 2014. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proceedings of the National Academy of Sciencess of the United States of America 111:E5593−E5601 doi: 10.1073/pnas.1419161111
CrossRef Google Scholar
|
[29]
|
Jin S, Kim SY, Susila H, Nasim Z, Youn G, et al. 2022. FLOWERING LOCUS M isoforms differentially affect the subcellular localization and stability of SHORT VEGETATIVE PHASE to regulate temperature-responsive flowering in Arabidopsis. Molecular Plant 15:1696−709 doi: 10.1016/j.molp.2022.08.007
CrossRef Google Scholar
|
[30]
|
Berland H, Albert NW, Stavland A, Jordheim M, McGhie TK, et al. 2019. Auronidins are a previously unreported class of flavonoid pigments that challenges when anthocyanin biosynthesis evolved in plants. Proceedings of the National Academy of Sciences of the United States of America 116:20232−39 doi: 10.1073/pnas.1912741116
CrossRef Google Scholar
|
[31]
|
Meyer P, Van de Poel B, De Coninck B. 2021. UV-B light and its application potential to reduce disease and pest incidence in crops. Horticulture Research 8:194 doi: 10.1038/s41438-021-00629-5
CrossRef Google Scholar
|
[32]
|
Guo J, Wang MH. 2010. Ultraviolet A-specific induction of anthocyanin biosynthesis and PAL expression in tomato (Solanum lycopersicum L.). Plant Growth Regulation 62:1−8 doi: 10.1007/s10725-010-9472-y
CrossRef Google Scholar
|
[33]
|
Kim MJ, Kim P, Chen Y, Chen B, Yang J, et al. 2021. Blue and UV-B light synergistically induce anthocyanin accumulation by co-activating nitrate reductase gene expression in Anthocyanin fruit (Aft) tomato. Plant Biology 23:210−20 doi: 10.1111/plb.13141
CrossRef Google Scholar
|
[34]
|
Xu F, Cao S, Shi L, Chen W, Su X, et al. 2014. Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. Journal of Agricultural and Food Chemistry 62:4778−83 doi: 10.1021/jf501120u
CrossRef Google Scholar
|
[35]
|
Li T, Yamane H, Tao R. 2021. Preharvest long-term exposure to UV-B radiation promotes fruit ripening and modifies stage-specific anthocyanin metabolism in highbush blueberry. Horticulture Research 8:67 doi: 10.1038/s41438-021-00503-4
CrossRef Google Scholar
|
[36]
|
Fang H, Dong Y, Yue X, Chen X, He N, et al. 2019. MdCOL4 interaction mediates crosstalk between UV-B and high temperature to control fruit coloration in apple. Plant and Cell Physiology 60:1055−66 doi: 10.1093/pcp/pcz023
CrossRef Google Scholar
|
[37]
|
Fang H, Dong Y, Yue X, Hu J, Jiang S, et al. 2019. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant, Cell & Environment 42:2090−104 doi: 10.1111/pce.13552
CrossRef Google Scholar
|
[38]
|
Xing Y, Sun W, Sun Y, Li J, Zhang J, et al. 2023. MPK6-mediated HY5 phosphorylation regulates light-induced anthocyanin accumulation in apple fruit. Plant Biotechnology Journal 21:283−301 doi: 10.1111/pbi.13941
CrossRef Google Scholar
|
[39]
|
Liu C, Chi C, Jin L, Zhu J, Yu J, et al. 2018. The bZip transcription factor HY5 mediates CRY1a-induced anthocyanin biosynthesis in tomato. Plant, Cell & Environment 41:1762−75 doi: 10.1111/pce.13171
CrossRef Google Scholar
|
[40]
|
Tsuchida-Mayama T, Sakai T, Hanada A, Uehara Y, Asami T, et al. 2010. Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. The Plant Journal 62:653−62 doi: 10.1111/j.1365-313X.2010.04180.x
CrossRef Google Scholar
|
[41]
|
Kang C, Lian H, Wang F, Huang J, Yang H. 2009. Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. The Plant Cell 21:2624−41 doi: 10.1105/tpc.109.069765
CrossRef Google Scholar
|
[42]
|
Gangappa SN, Botto JF. 2016. The multifaceted roles of HY5 in plant growth and development. Molecular Plant 9:1353−65 doi: 10.1016/j.molp.2016.07.002
CrossRef Google Scholar
|
[43]
|
Shin DH, Choi M, Kim K, Bang G, Cho M, et al. 2013. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Letters 587:1543−47 doi: 10.1016/j.febslet.2013.03.037
CrossRef Google Scholar
|
[44]
|
Link S, Grund SE, Diederichs S. 2016. Alternative splicing affects the subcellular localization of Drosha. Nucleic Acids Research 44:5330−43 doi: 10.1093/nar/gkw400
CrossRef Google Scholar
|
[45]
|
Sanyal SK, Kanwar P, Samtani H, Kaur K, Jha SK, et al. 2017. Alternative splicing of CIPK3 results in distinct target selection to propagate ABA signaling in Arabidopsis. Frontiers in Plant Science 8:1924 doi: 10.3389/fpls.2017.01924
CrossRef Google Scholar
|
[46]
|
Wang T, Wang X, Wang H, Yu C, Xiao C, et al. 2023. Arabidopsis SRPKII family proteins regulate flowering via phosphorylation of SR proteins and effects on gene expression and alternative splicing. New Phytologist 238:1889−907 doi: 10.1111/nph.18895
CrossRef Google Scholar
|
[47]
|
Kriechbaumer V, Wang P, Hawes C, Abell BM. 2012. Alternative splicing of the auxin biosynthesis gene YUCCA4 determines its subcellular compartmentation. The Plant Journal 70:292−302 doi: 10.1111/j.1365-313X.2011.04866.x
CrossRef Google Scholar
|
[48]
|
Liu Y, Zhang X, Liu X, Zheng P, Su L, et al. 2022. Phytochrome interacting factor MdPIF7 modulates anthocyanin biosynthesis and hypocotyl growth in apple. Plant Physiology 188:2342−63 doi: 10.1093/plphys/kiab605
CrossRef Google Scholar
|
[49]
|
Liu Z, Zhang Y, Wang J, Li P, Zhao C, et al. 2015. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. Plant Science 238:64−72 doi: 10.1016/j.plantsci.2015.06.001
CrossRef Google Scholar
|
[50]
|
Li T, Jia K, Lian H, Yang X, Li L, et al. 2014. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochemical and Biophysical Research Communications 454:78−83 doi: 10.1016/j.bbrc.2014.10.059
CrossRef Google Scholar
|
[51]
|
Kadomura-Ishikawa Y, Miyawaki K, Noji S, Takahashi A. 2013. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits. Journal of Plant Research 126:847−57 doi: 10.1007/s10265-013-0582-2
CrossRef Google Scholar
|
[52]
|
Ohgishi M, Saji K, Okada K, Sakai T. 2004. Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 101:2223−28 doi: 10.1073/pnas.0305984101
CrossRef Google Scholar
|
[53]
|
Ahmad M, Lin C, Cashmore AR. 1995. Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. The Plant Journal 8:653−58 doi: 10.1046/j.1365-313X.1995.08050653.x
CrossRef Google Scholar
|
[54]
|
Tognacca RS, Rodríguez FS, Aballay FE, Cartagena CM, Servi L, et al. 2023. Alternative splicing in plants: current knowledge and future directions for assessing the biological relevance of splice variants. Journal of Experimental Botany 74:2251−72 doi: 10.1093/jxb/erac431
CrossRef Google Scholar
|
[55]
|
John S, Olas JJ, Mueller-Roeber B. 2021. Regulation of alternative splicing in response to temperature variation in plants. Journal of Experimental Botany 72:6150−63 doi: 10.1093/jxb/erab232
CrossRef Google Scholar
|
[56]
|
Godoy Herz MA, Kubaczka MG, Brzyżek G, Servi L, Krzyszton M, et al. 2019. Light regulates plant alternative splicing through the control of transcriptional elongation. Molecular Cell 73:1066−1074.E3 doi: 10.1016/j.molcel.2018.12.005
CrossRef Google Scholar
|
[57]
|
Laloum T, Martín G, Duque P. 2018. Alternative splicing control of abiotic stress responses. Trends in Plant Science 23:140−50 doi: 10.1016/j.tplants.2017.09.019
CrossRef Google Scholar
|
[58]
|
Shang X, Cao Y, Ma L. 2017. Alternative splicing in plant genes: a means of regulating the environmental fitness of plants. International Journal of Molecular Sciences 18:432 doi: 10.3390/ijms18020432
CrossRef Google Scholar
|
[59]
|
Shikata H, Shibata M, Ushijima T, Nakashima M, Kong SG, et al. 2012. The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction. The Plant Journal 70:727−38 doi: 10.1111/j.1365-313X.2012.04937.x
CrossRef Google Scholar
|
[60]
|
Shikata H, Hanada K, Ushijima T, Nakashima M, Suzuki Y, et al. 2014. Phytochrome controls alternative splicing to mediate light responses in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111:18781−86 doi: 10.1073/pnas.1407147112
CrossRef Google Scholar
|
[61]
|
Xin R, Zhu L, Salomé PA, Mancini E, Marshall CM, et al. 2017. SPF45-related splicing factor for phytochrome signaling promotes photomorphogenesis by regulating pre-mRNA splicing in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 114:E7018−E7027 doi: 10.1073/pnas.1706379114
CrossRef Google Scholar
|
[62]
|
Riegler S, Servi L, Scarpin MR, Godoy Herz MA, Kubaczka MG, et al. 2021. Light regulates alternative splicing outcomes via the TOR kinase pathway. Cell Reports 36:109676 doi: 10.1016/j.celrep.2021.109676
CrossRef Google Scholar
|