[1]

Yang B, He S, Liu Y, Liu B, Ju Y, et al. 2020. Transcriptomics integrated with metabolomics reveals the effect of regulated deficit irrigation on anthocyanin biosynthesis in Cabernet Sauvignon grape berries. Food Chemistry 314:126170

doi: 10.1016/j.foodchem.2020.126170
[2]

Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, et al. 2004. Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theoretical and Applied Genetics 109:1017−27

doi: 10.1007/s00122-004-1704-y
[3]

Tanksley SD, Young ND, Paterson AH, Bonierbale MW. 1989. RFLP mapping in plant breeding: new tools for an old science. Bio/Technology 7:257−64

doi: 10.1038/nbt0389-257
[4]

Xu Y, Crouch JH. 2008. Marker-assisted selection in plant breeding: from publications to practice. Crop Science 48:391−407

doi: 10.2135/cropsci2007.04.0191
[5]

Xu Y, Li P, Zou C, Lu Y, Xie C, et al. 2017. Enhancing genetic gain in the era of molecular breeding. Journal of Experimental Botany 68:2641−66

doi: 10.1093/jxb/erx135
[6]

Westergaard M. 1958. The mechanism of sex determination in dioecious flowering plants. Advances in Genetics 9:217−81

doi: 10.1016/S0065-2660(08)60163-7
[7]

Charlesworth D. 2016. Plant sex chromosomes. Annual Review of Plant Biology 67:397−420

doi: 10.1146/annurev-arplant-043015-111911
[8]

Botstein D, White RL, Skolnick M, Davis RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32:314−31

[9]

Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18:6531−35

doi: 10.1093/nar/18.22.6531
[10]

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, et al. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23:4407−14

doi: 10.1093/nar/23.21.4407
[11]

Richard GF, Kerrest A, Dujon B. 2008. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiology and Molecular Biology Reviews 72:686−727

doi: 10.1128/MMBR.00011-08
[12]

Nikiforov TT, Rendle RB, Goelet P, Rogers YH, Kotewicz ML, et al. 1994. Genetic Bit Analysis: a solid phase method for typing single nucleotide polymorphisms. Nucleic Acids Research 22:4167−75

doi: 10.1093/nar/22.20.4167
[13]

Brookes AJ. 1999. The essence of SNPs. Gene 234:177−86

doi: 10.1016/S0378-1119(99)00219-X
[14]

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, et al. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

doi: 10.1371/journal.pone.0019379
[15]

Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, et al. 2014. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9:e90346

doi: 10.1371/journal.pone.0090346
[16]

Xu C, Ren Y, Jian Y, Guo Z, Zhang Y, et al. 2017. Development of a maize 55K SNP array with improved genome coverage for molecular breeding. Molecular Breeding 37:20

doi: 10.1007/s11032-017-0622-z
[17]

Burridge AJ, Wilkinson PA, Winfield MO, Barker GLA, Allen AM, et al. 2018. Conversion of array-based single nucleotide polymorphic markers for use in targeted genotyping by sequencing in hexaploid wheat (Triticum aestivum). Plant Biotechnology Journal 16:867−76

doi: 10.1111/pbi.12834
[18]

Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, et al. 2019. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology 68:594−606

doi: 10.1093/sysbio/syy086
[19]

Qu X, Lu J, Lamikanra O. 1996. Genetic diversity in Muscadine and American bunch grapes based on randomly amplified polymorphic DNA (RAPD) analysis. Journal of the American Society for Horticultural Science 121:1020−23

doi: 10.21273/JASHS.121.6.1020
[20]

Fu P, Tian Q, Lai G, Li R, Song S, et al. 2019. Cgr1, a ripe rot resistance QTL in Vitis amurensis 'Shuang Hong' grapevine. Horticulture Research 6:67

doi: 10.1038/s41438-019-0148-0
[21]

Fu P, Wu W, Lai G, Li R, Peng Y, et al. 2020. Identifying plasmopara viticola resistance loci in grapevine (Vitis amurensis) via genotyping-by-sequencing-based QTL mapping. Plant Physiology and Biochemistry 154:75−84

doi: 10.1016/j.plaphy.2020.05.016
[22]

Plant and Fungi Data Integration. 2018. GrapeReSeq_Illumina_20K. https://urgi.versailles.inra.fr/Species/Vitis/GrapeReSeq_Illumina_20K

[23]

Guo Z, Wang H, Tao J, Ren Y, Xu C, et al. 2019. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Molecular Breeding 39:37

doi: 10.1007/s11032-019-0940-4
[24]

OIV. 2019. 2019 Statistical Report on World Vitiviniculture. Annual Statistics Reports. https://www.oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf

[25]

Wang J, Zhang Z. 2021. GAPIT Version 3: boosting power and accuracy for genomic association and prediction. Genomics Proteomics & Bioinformatics 19:629−40

doi: 10.1016/j.gpb.2021.08.005
[26]

Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, et al. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376

doi: 10.1371/journal.pone.0003376
[27]

Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, et al. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics 12:499−510

doi: 10.1038/nrg3012
[28]

Chung YS, Choi SC, Jun TH, Kim C. 2017. Genotyping-by-sequencing: a promising tool for plant genetics research and breeding. Horticulture, Environment, and Biotechnology 58:425−31

doi: 10.1007/s13580-017-0297-8
[29]

Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, et al. 2010. Target-enrichment strategies for next-generation sequencing. Nature Methods 7:111−18

doi: 10.1038/nmeth.1419
[30]

Samorodnitsky E, Datta J, Jewell BM, Hagopian R, Miya J, et al. 2015. Comparison of custom capture for targeted next-generation DNA sequencing. The Journal of Molecular Diagnostics 17:64−75

doi: 10.1016/j.jmoldx.2014.09.009
[31]

Gao J, Wang S, Zhou Z, Wang S, Dong C, et al. 2019. Linkage mapping and genome-wide association reveal candidate genes conferring thermotolerance of seed-set in maize. Journal of Experimental Botany 70:4849−63

doi: 10.1093/jxb/erz171
[32]

Liu H, Jian L, Xu J, Zhang Q, Zhang M, et al. 2020. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. The Plant Cell 32:1397−413

doi: 10.1105/tpc.19.00934
[33]

Hou J, Liu Y, Hao C, Li T, Liu H, et al. 2020. Starch metabolism in wheat: gene variation and association analysis reveal additive effects on kernel weight. Frontiers in Plant Science 11:562008

doi: 10.3389/fpls.2020.562008
[34]

Shaukat M, Sun M, Ali M, Mahmood T, Naseer S, et al. 2021. Genetic gain for grain micronutrients and their association with phenology in historical wheat cultivars released between 1911 and 2016 in Pakistan. Agronomy 11:1247

doi: 10.3390/agronomy11061247
[35]

Li X, Zheng H, Wu W, Liu H, Wang J, et al. 2020. QTL mapping and candidate gene analysis for alkali tolerance in japonica rice at the bud stage based on linkage mapping and genome-wide association study. Rice 13:48

doi: 10.1186/s12284-020-00412-5
[36]

Du H, Yang J, Chen B, Zhang X, Zhang J, et al. 2019. Target sequencing reveals genetic diversity, population structure, core-SNP markers, and fruit shape-associated loci in pepper varieties. BMC Plant Biology 19:578

doi: 10.1186/s12870-019-2122-2
[37]

Shen Y, Wang J, Shaw RK, Yu H, Sheng X, et al. 2021. Development of GBTS and KASP panels for genetic diversity, population structure, and fingerprinting of a large collection of broccoli (Brassica oleracea L. var. italica) in China. Frontiers in Plant Science 12:655254

doi: doi.org/10.3389/fpls.2021.655254
[38]

This P, Lacombe T, Thomas MR. 2006. Historical origins and genetic diversity of wine grapes. Trends in Genetics 22:511−19

doi: 10.1016/j.tig.2006.07.008
[39]

Dalbó MA, Ye GN, Weeden NF, Steinkellner H, Sefc KM, et al. 2000. A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43:333−40

doi: 10.1139/g99-136
[40]

Riaz S, Krivanek AF, Xu K, Walker MA. 2006. Refined mapping of the Pierce's disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris × V. arizonica. Theoretical and Applied Genetics 113:1317−29

doi: 10.1007/s00122-006-0385-0
[41]

Fechter I, Hausmann L, Daum M, Sörensen TR, Viehöver P, et al. 2012. Candidate genes within a 143 kb region of the flower sex locus in Vitis. Molecular Genetics and Genomics 287:247−59

doi: 10.1007/s00438-012-0674-z
[42]

Picq S, Santoni S, Lacombe T, Latreille M, Weber A, et al. 2014. A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biology 14:229

doi: 10.1186/s12870-014-0229-z
[43]

Massonnet M, Cochetel N, Minio A, Vondras AM, Lin J, et al. 2020. The genetic basis of sex determination in grapes. Nature Communications 11:2902

doi: 10.1038/s41467-020-16700-z
[44]

Bull JJ. 1985. Sex determining mechanisms: an evolutionary perspective. Experientia 41:1285−96

doi: 10.1007/BF01952071
[45]

Ming R, Bendahmane A, Renner SS. 2011. Sex chromosomes in land plants. Annual Review of Plant Biology 62:485−514

doi: 10.1146/annurev-arplant-042110-103914
[46]

McGovern PE. 2007. Ancient wine: the search for the origins of viniculture. Princeton University Press. 392 pp.

[47]

Zou C, Massonnet M, Minio A, Patel S, Llaca V, et al. 2021. Multiple independent recombinations led to hermaphroditism in grapevine. Proceedings of the National Academy of Sciences of the United States of America 118:e2023548118

doi: 10.1073/pnas.2023548118
[48]

Iocco-Corena P, Chaïb J, Torregrosa L, Mackenzie D, Thomas MR, et al. 2021. VviPLATZ1 is a major factor that controls female flower morphology determination in grapevine. Nature Communications 12:6995

doi: 10.1038/s41467-021-27259-8