[1]

Levin MW, Boyles SD. 2015. Effects of autonomous vehicle ownership on trip, mode, and route choice. Transportation Research Record: Journal of the Transportation Research Board 2493(1):29−38

doi: 10.3141/2493-04
[2]

Tsugawa S. 2011. Automated driving systems: common ground of automobiles and robots. International Journal of Humanoid Robotics 8(1):1−12

doi: 10.1142/S0219843611002319
[3]

Shi E, Gasser TM, Seeck A, Auerswald R. 2020. The principles of operation framework: a comprehensive classification concept for automated driving functions. SAE International Journal of Connected and Automated Vehicles 3(1):27−37

doi: 10.4271/12-03-01-0003
[4]

Abe R. 2019. Introducing autonomous buses and taxis: Quantifying the potential benefits in Japanese transportation systems. Transportation Research Part A: Policy and Practice 126:94−113

doi: 10.1016/j.tra.2019.06.003
[5]

Lutin JM. 2018. Not if, but when: autonomous driving and the future of transit. Journal of Public Transportation 21(1):92−103

doi: 10.5038/2375-0901.21.1.10
[6]

Alessandrini A, Site PD, Gatta V, Marcucci E, Zhang Q, et al. 2016. Investigating users' attitudes towards conventional and automated buses in twelve European cities. International Journal of Transport Economics 43(4):413−36

doi: 10.19272/201606704001
[7]

Papadima G, Genitsaris E, Karagiotas I, Naniopoulos A, Nalmpantis D. 2020. Investigation of acceptance of driverless buses in the city of Trikala and optimization of the service using Conjoint Analysis. Utilities Policy 62:100994

doi: 10.1016/j.jup.2019.100994
[8]

Rosell J, Allen J. 2020. Test-riding the driverless bus: Determinants of satisfaction and reuse intention in eight test-track locations. Transportation Research Part A: Policy and Practice 140:166−89

doi: 10.1016/j.tra.2020.08.013
[9]

Bernhard C, Oberfeld D, Hoffmann C, Weismüller D, Hecht H. 2020. User acceptance of automated public transport. Transportation Research Part F: Traffic Psychology and Behaviour 70:109−23

doi: 10.1016/j.trf.2020.02.008
[10]

Yan Y, Zhong S, Tian J, Li T. 2022. Continuance intention of autonomous buses: An empirical analysis based on passenger experience. Transport Policy 126:85−95

doi: 10.1016/j.tranpol.2022.07.010
[11]

Kim K, Yang W, Brewer S. 2022. Analyzing change in business activity before, during, and after autonomous shuttle bus service in the old Las Vegas downtown area. Journal of Urban Planning and Development 148(1):04021065

doi: 10.1061/(ASCE)UP.1943-5444.0000788
[12]

Sun S, Wong YD, Rau A. 2020. Economic assessment of a Dynamic Autonomous Road Transit system for Singapore. Research in Transportation Economics 83:100843

doi: 10.1016/j.retrec.2020.100843
[13]

Salonen AO. 2018. Passenger's subjective traffic safety, in-vehicle security and emergency management in the driverless shuttle bus in Finland. Transport Policy 61:106−10

doi: 10.1016/j.tranpol.2017.10.011
[14]

Roche-Cerasi I. 2019. Public acceptance of driverless shuttles in Norway. Transportation Research Part F: Traffic Psychology and Behaviour 66:162−83

doi: 10.1016/j.trf.2019.09.002
[15]

Kassens-Noor E, Kotval-Karamchandani Z, Cai M. 2020. Willingness to ride and perceptions of autonomous public transit. Transportation Research Part A: Policy and Practice 138:92−104

doi: 10.1016/j.tra.2020.05.010
[16]

Benmimoun A, Lowson M, Marques A, Giustiniani G, Parent M. 2009. Demonstration of advanced transport applications in CityMobil project. Transportation Research Record: Journal of the Transportation Research Board 2110(1):9−17

doi: 10.3141/2110-02
[17]

Shen J, Liu K, Ma C, Zhao Y, Shi C. 2022. Bibliometric analysis and system review of vehicle routing optimization for emergency material distribution. Journal of Traffic and Transportation Engineering 9(6):893−911

doi: 10.1016/j.jtte.2022.10.001
[18]

van Eck NJ, Waltman L. 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523−38

doi: 10.1007/s11192-009-0146-3
[19]

Herrenkind B, Brendel AB, Nastjuk I, Greve M, Kolbe LM. 2019. Investigating end-user acceptance of autonomous electric buses to accelerate diffusion. Transportation Research Part D: Transport and Environment 74:255−76

doi: 10.1016/j.trd.2019.08.003
[20]

Zhai Z, Yang Y, Shen Y, Ji Y, Du Y. 2020. Assessing the impacts of autonomous bus-on-demand based on agent-based simulation: a case study of Fuyang, Zhejiang, China. Journal of Advanced Transportation 2020:7981791

doi: 10.1155/2020/7981791
[21]

Badia H, Jenelius E. 2021. Design and operation of feeder systems in the era of automated and electric buses. Transportation Research Part A: Policy and Practice 152:146−72

doi: 10.1016/j.tra.2021.07.015
[22]

Dong X, Discenna M, Guerra E. 2019. Transit user perceptions of driverless buses. Transportation 46(1):35−50

doi: 10.1007/s11116-017-9786-y
[23]

Weschke J, Bahamonde-Birke FJ, Gade K, Kazagli E. 2021. Asking the Wizard-of-Oz: How experiencing autonomous buses affects preferences towards their use for feeder trips in public transport. Transportation Research Part C: Emerging Technologies 133:103454

doi: 10.1016/j.trc.2021.103454
[24]

Mouratidis K, Cobeña Serrano V. 2021. Autonomous buses: Intentions to use, passenger experiences, and suggestions for improvement. Transportation Research Part F: Traffic Psychology and Behaviour 76:321−35

doi: 10.1016/j.trf.2020.12.007
[25]

Piatkowski DP. 2021. Autonomous shuttles: What do users expect and how will they use them? The Journal of Urban Technology 28(3−4):97−115

doi: 10.1080/10630732.2021.1896345
[26]

Guo J, Susilo Y, Antoniou C, Pernestål A. 2021. When and why do people choose automated buses over conventional buses? Results of a context-dependent stated choice experiment Sustainable Cities and Society 69:102842

doi: 10.1016/j.scs.2021.102842
[27]

Zhao X, Susilo YO, Pernestål A. 2022. The dynamic and long-term changes of automated bus service adoption. Transportation Research Part A: Policy and Practice 155:450−63

doi: 10.1016/j.tra.2021.10.021
[28]

Guo J, Susilo Y, Antoniou C, Pernestål A. 2022. Word of mouth and behavioural intentions of the automated bus service. Cities 126:103668

doi: 10.1016/j.cities.2022.103668
[29]

Cao Z, Ceder AA, Zhang S. 2019. Real-time schedule adjustments for autonomous public transport vehicles. Transportation Research Part C: Emerging Technologies 109:60−78

doi: 10.1016/j.trc.2019.10.004
[30]

Cao Z, Avi Ceder A. 2019. Autonomous shuttle bus service timetabling and vehicle scheduling using skip-stop tactic. Transportation Research Part C: Emerging Technologies 102:370−95

doi: 10.1016/j.trc.2019.03.018
[31]

Gkiotsalitis K, Schmidt M, van der Hurk E. 2022. Subline frequency setting for autonomous minibusses under demand uncertainty. Transportation Research Part C: Emerging Technologies 135:103492

doi: 10.1016/j.trc.2021.103492
[32]

Zhang Y, Chen X, Yu L. 2020. Evaluating the emission and energy impacts of automated buses on urban expressways. Transportation Research Record: Journal of the Transportation Research Board 2674(12):515−29

doi: 10.1177/0361198120954437
[33]

Wang L, Ma W, Wang L, Ren Y, Yu C. 2021. Enabling in-depot automated routing and recharging scheduling for automated electric bus transit systems. Journal of Advanced Transportation 2021:5531063

doi: 10.1155/2021/5531063
[34]

Zhang L, Qian G, Song Z, Wang D. 2023. Deploying dedicated lanes for connected and autonomous buses in urban transportation networks. Transportmetrica A: Transport Science 19:2005181

doi: 10.1080/23249935.2021.2005181
[35]

Hatzenbühler J, Cats O, Jenelius E. 2022. Network design for line-based autonomous bus services. Transportation 49(2):467−502

doi: 10.1007/s11116-021-10183-7
[36]

Dai Z, Liu X C, Chen X, Ma X. 2020. Joint optimization of scheduling and capacity for mixed traffic with autonomous and human-driven buses: A dynamic programming approach. Transportation Research Part C: Emerging Technologies 114:598−619

doi: 10.1016/j.trc.2020.03.001
[37]

Tian Q, Lin YH, Wang DZW. 2021. Autonomous and conventional bus fleet optimization for fixed-route operations considering demand uncertainty. Transportation 48:2735−63

doi: 10.1007/s11116-020-10146-4
[38]

Hatzenbühler J, Cats O, Jenelius E. 2020. Transitioning towards the deployment of line-based autonomous buses: Consequences for service frequency and vehicle capacity. Transportation Research Part A: Policy and Practice 138:491−507

doi: 10.1016/j.tra.2020.06.019
[39]

Tian Q, Wang DZW, Lin YH. 2022. Optimal deployment of autonomous buses into a transit service network. Transportation Research Part E: Logistics and Transportation Review 165:102865

doi: 10.1016/j.tre.2022.102865
[40]

Zhang W, Jenelius E, Badia H. 2019. Efficiency of semi-autonomous and fully autonomous bus services in trunk-and-branches networks. Journal of Advanced Transportation 2019:7648735

doi: 10.1155/2019/7648735
[41]

Liu T, Ceder AA, Rau A. 2020. Using Deficit Function to Determine the Minimum Fleet Size of an Autonomous Modular Public Transit System. Transportation Research Record: Journal of the Transportation Research Board 2674(11):532−41

doi: 10.1177/0361198120945981
[42]

Wu J, Kulcsár B, Selpi, Qu X. 2021. A modular, adaptive, and autonomous transit system (MAATS): An in-motion transfer strategy and performance evaluation in urban grid transit networks. Transportation Research Part A: Policy and Practice 151:81−98

doi: 10.1016/j.tra.2021.07.005
[43]

Dakic I, Yang K, Menendez M, Chow JYJ. 2021. On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram. Transportation Research Part B: Methodological 148:38−59

doi: 10.1016/j.trb.2021.04.005
[44]

Tian Q, Lin YH, Wang DZW, Liu Y. 2022. Planning for modular-vehicle transit service system: Model formulation and solution methods. Transportation Research Part C: Emerging Technologies 138:103627

doi: 10.1016/j.trc.2022.103627