[1] |
Mu L, Liu Y. 2007. Genetic diversity of Tilia amurensis populations in different geographical distribution regions. Chinese Journal of Plant Ecology 31:1190−98 doi: 10.17521/cjpe.2007.0148 |
[2] |
Liu Y, Chang Q, Tang Z, Wu K, Abozeid A, et al. 2022. The interrelationship between latitudinal differences and metabolic differences in the natural distribution area of Tilia amurensis Rupr. Forests 13:1507 doi: 10.3390/f13091507 |
[3] |
Kwon EB, Kim YS, Han SM, Kim SG, Choi JG. 2022. The protective effect of Tilia amurensis honey on influenza A virus infection through stimulation of interferon-mediated IFITM3 signaling. Biomedicine & Pharmacotherapy 153:113259 doi: 10.1016/j.biopha.2022.113259 |
[4] |
Chun SW, Lee JW, Ahn JY. 2022. Development and characterization of novel microsatellite markers in Tilia amurensis Rupr. using next-generation sequencing. Molecular Biology Reports 49:1637−41 doi: 10.1007/s11033-021-07035-z |
[5] |
Dudareva N, Klempien A, Muhlemann JK, Kaplan I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198:16−32 doi: 10.1111/nph.12145 |
[6] |
Abbas F, Zhou Y, He J, Ke Y, Qin W, et al. 2021. Metabolite and transcriptome profiling analysis revealed that melatonin positively regulates floral scent production in Hedychium coronarium. Frontiers in Plant Science 12:808899 doi: 10.3389/fpls.2021.808899 |
[7] |
Li X, Cai K, Fan Z, Wang J, Wang L, et al. 2022. Dissection of transcriptome and metabolome insights into the isoquinoline alkaloid biosynthesis during stem development in Phellodendron amurense (Rupr.). Plant Science 325:111461 doi: 10.1016/j.plantsci.2022.111461 |
[8] |
Ali M, Hussain RM, Rehman NU, She G, Li P, et al. 2018. De novo transcriptome sequencing and metabolite profiling analyses reveal the complex metabolic genes involved in the terpenoid biosynthesis in Blue Anise Sage (Salvia guaranitica L.). DNA Research 25:597−617 doi: 10.1093/dnares/dsy028 |
[9] |
Mu L, Zheng J, Wang Y, Liu L. 2009. Chemical compositions and geographic variation in flowers and fruits of Tilia amurensis. Scientia Silvae Sinicae 45:46−52 doi: 10.3321/j.issn:1001-7488.2009.04.008 |
[10] |
Izawa T. 2021. What is going on with the hormonal control of flowering in plants? The Plant Journal 105:431−45 doi: 10.1111/tpj.15036 |
[11] |
Janowska B, Andrzejak R. 2022. Cytokinins and gibberellins stimulate the flowering and post-harvest longevity of flowers and leaves of Calla lilies (Zantedeschia Spreng.) with colourful inflorescence spathes. Agronomy 12:1859 doi: 10.3390/agronomy12081859 |
[12] |
Xu Y, Prunet N, Gan ES, Wang Y, Stewart D, et al. 2018. SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis. The EMBO Journal 37:e97499 doi: 10.15252/embj.201797499 |
[13] |
Han Y, Yang H, Jiao Y. 2014. Regulation of inflorescence architecture by cytokinins. Frontiers in Plant Science 5:669 doi: 10.3389/fpls.2014.00669 |
[14] |
Dar RA, Nisar S, Tahir I. 2021. Ethylene: a key player in ethylene sensitive flower senescence: a review. Scientia Horticulturae 290:110491 doi: 10.1016/j.scienta.2021.110491 |
[15] |
Zhang L, Song C, Guo D, Guo L, Hou X, et al. 2022. Identification of differentially expressed miRNAs and their target genes in response to brassinolide treatment on flowering of tree peony (Paeonia ostii). Plant Signaling & Behavior 17:2056364 doi: 10.1080/15592324.2022.2056364 |
[16] |
Sheng J, Li X, Zhang D. 2022. Gibberellins, brassinolide, and ethylene signaling were involved in flower differentiation and development in Nelumbo nucifera. Horticultural Plant Journal 8:243−50 doi: 10.1016/j.hpj.2021.06.002 |
[17] |
Ke Y, Abbas F, Zhou Y, Yu R, Fan Y. 2021. Auxin-responsive R2R3-MYB transcription factors HcMYB1 and HcMYB2 activate volatile biosynthesis in Hedychium coronarium flowers. Frontiers in Plant Science 12:710826 doi: 10.3389/fpls.2021.710826 |
[18] |
Qiao Z, Hu H, Shi S, Yuan X, Yan B, et al. 2021. An update on the function, biosynthesis and regulation of floral volatile terpenoids. Horticulturae 7:451 doi: 10.3390/horticulturae7110451 |
[19] |
Colquhoun TA, Clark DG. 2011. Unraveling the regulation of floral fragrance biosynthesis. Plant Signaling & Behavior 6:378−81 doi: 10.4161/psb.6.3.14339 |
[20] |
Sapir-Mir M, Mett A, Belausov E, Tal-Meshulam S, Frydman A, et al. 2008. Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiology 148:1219−28 doi: 10.1104/pp.108.127951 |
[21] |
Xu Q, He Y, Yan X, Zhao S, Zhu J, et al. 2018. Unraveling a crosstalk regulatory network of temporal aroma accumulation in tea plant (Camellia sinensis) leaves by integration of metabolomics and transcriptomics. Environmental and Experimental Botany 149:81−94 doi: 10.1016/j.envexpbot.2018.02.005 |
[22] |
Wei G, Tian P, Zhang F, Qin H, Miao H, et al. 2016. Integrative analyses of nontargeted volatile profiling and transcriptome data provide molecular insight into VOC diversity in cucumber plants (Cucumis sativus). Plant Physiology 172:603−18 doi: 10.1104/pp.16.01051 |
[23] |
Zhou C, Zhu C, Tian C, Xu K, Huang L, et al. 2022. Integrated volatile metabolome, multi-flux full-length sequencing, and transcriptome analyses provide insights into the aroma formation of postharvest jasmine (Jasminum sambac) during flowering. Postharvest Biology and Technology 183:111726 doi: 10.1016/j.postharvbio.2021.111726 |
[24] |
Yan J, Wang H, Wang Y, Xu S, Wan Y, et al. 2021. Integrated metabolome and transcriptome analysis reveals candidate genes involved in metabolism of terpenoids and phthalides in celery seeds. Industrial Crops and Products 172:114011 doi: 10.1016/j.indcrop.2021.114011 |
[25] |
Cheng S, Fu X, Mei X, Zhou Y, Du B, et al. 2016. Regulation of biosynthesis and emission of volatile phenylpropanoids/benzenoids in petunia× hybrida flowers by multi-factors of circadian clock, light, and temperature. Plant Physiology and Biochemistry 107:1−8 doi: 10.1016/j.plaphy.2016.05.026 |
[26] |
Mei X, Wan S, Lin C, Zhou C, Hu L, et al. 2021. Integration of metabolome and transcriptome reveals the relationship of benzenoid–phenylpropanoid pigment and aroma in purple tea flowers. Frontiers in Plant Science 12:762330 doi: 10.3389/fpls.2021.762330 |
[27] |
Dong N, Lin H. 2021. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. Journal of Integrative Plant Biology 63:180−209 doi: 10.1111/jipb.13054 |
[28] |
Tohge T, de Souza LP, Fernie AR. 2017. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. Journal of Experimental Botany 68:4013−28 doi: 10.1093/jxb/erx177 |
[29] |
Wang S, Alseekh S, Fernie AR, Luo J. 2019. The structure and function of major plant metabolite modifications. Molecular Plant 12:899−919 doi: 10.1016/j.molp.2019.06.001 |
[30] |
Li W, Lu X, Li J. 2022. The effect of organic nutrient solution on flavor in ripe cherry tomato fruit—Transcriptome and metabolomic analyses. Environmental and Experimental Botany 194:104721 doi: 10.1016/j.envexpbot.2021.104721 |
[31] |
Pan Q, Wang Q, Yuan F, Xing S, Zhao J, et al. 2012. Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS ONE 7:e43038 doi: 10.1371/journal.pone.0043038 |
[32] |
Xu Q, Wang S, Hong H, Zhou Y. 2019. Transcriptomic profiling of the flower scent biosynthesis pathway of Cymbidium faberi Rolfe and functional characterization of its jasmonic acid carboxyl methyltransferase gene. BMC Genomics 20:125 doi: 10.1186/s12864-019-5501-z |
[33] |
Ding K, Pei T, Bai Z, Jia Y, Ma P, et al. 2017. SmMYB36, a novel R2R3-MYB transcription factor, enhances tanshinone accumulation and decreases phenolic acid content in Salvia miltiorrhiza hairy roots. Scientific Reports 7:5104 doi: 10.1038/s41598-017-04909-w |
[34] |
Bedon F, Bomal C, Caron S, Levasseur C, Boyle B, et al. 2010. Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses. Journal of Experimental Botany 61:3847−64 doi: 10.1093/jxb/erq196 |
[35] |
Colquhoun TA, Kim JY, Wedde AE, Levin LA, Schmitt KC, et al. 2011. PhMYB4 fine-tunes the floral volatile signature of Petunia× hybrida through PhC4H. Journal of Experimental Botany 62:1133−43 doi: 10.1093/jxb/erq342 |
[36] |
Verdonk JC, Haring MA, Van Tunen AJ, Schuurink RC. 2005. ODORANT 1 regulates fragrance biosynthesis in petunia flowers. The Plant Cell 17:1612−24 doi: 10.1105/tpc.104.028837 |
[37] |
Yang J, Zhang J, Wang Z, Zhu Q, Wang W. 2001. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology 127:315−23 doi: 10.1104/pp.127.1.315 |
[38] |
Shi W, Li H, Liu T, Polle A, Peng C, et al. 2015. Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc. Plant, Cell & Environment 38:207−23 doi: 10.1111/pce.12434 |
[39] |
Cai K, Zhang D, Li X, Zhang Q, Jiang L, et al. 2023. Exogenous phytohormone application and transcriptome analysis provides insights for adventitious root formation in Taxus cuspidata S. et Z. Plant Growth Regulation 100:33−53 doi: 10.1007/s10725-022-00934-6 |
[40] |
Zou S, Wu J, Shahid MQ, He Y, Lin S, et al. 2020. Identification of key taste components in loquat using widely targeted metabolomics. Food Chemistry 323:126822 doi: 10.1016/j.foodchem.2020.126822 |
[41] |
Li X, Li Y, Zhao M, Hu Y, Meng F, et al. 2021. Molecular and metabolic insights into anthocyanin biosynthesis for leaf color change in chokecherry (Padus virginiana). International Journal of Molecular Sciences 22:10697 doi: 10.3390/ijms221910697 |
[42] |
Yue Y, Liu J, Shi T, Chen M, Li Y, et al. 2019. Integrating transcriptomic and GC-MS metabolomic analysis to characterize color and aroma formation during tepal development in Lycoris longituba. Plants 8:53 doi: 10.3390/plants8030053 |
[43] |
Ibragic S, Barbini S, Oberlerchner JT, Potthast A, Rosenau T, et al. 2021. Antioxidant properties and qualitative analysis of phenolic constituents in Ephedra spp. by HPTLC together with injection port derivatization GC–MS. Journal of Chromatography B 1180:122877 doi: 10.1016/j.jchromb.2021.122877 |
[44] |
Qiu W, Su W, Cai Z, Dong L, Li C, et al. 2020. Combined analysis of transcriptome and metabolome reveals the potential mechanism of coloration and fruit quality in yellow and purple Passiflora edulis Sims. Journal of Agricultural and Food Chemistry 68:12096−106 doi: 10.1021/acs.jafc.0c03619 |
[45] |
Xie C, Mao X, Huang J, Ding Y, Wu J, et al. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research 39:W316−W322 doi: 10.1093/nar/gkr483 |
[46] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009 |
[47] |
Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890 doi: 10.1093/bioinformatics/bty560 |
[48] |
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52 doi: 10.1038/nbt.1883 |
[49] |
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389−402 doi: 10.1093/nar/25.17.3389 |
[50] |
Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323 doi: 10.1186/1471-2105-12-323 |
[51] |
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28:511−15 doi: 10.1038/nbt.1621 |
[52] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8 |
[53] |
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. 2010. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research 38:W64−W70 doi: 10.1093/nar/gkq310 |
[54] |
Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, et al. 2016. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Molecular Plant 9:1667−70 doi: 10.1016/j.molp.2016.09.014 |
[55] |
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504 doi: 10.1101/gr.1239303 |
[56] |
Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3:1101−8 doi: 10.1038/nprot.2008.73 |
[57] |
Yu D, Qanmber G, Lu L, Wang L, Li J, et al. 2018. Genome-wide analysis of cotton GH3 subfamily II reveals functional divergence in fiber development, hormone response and plant architecture. BMC Plant Biology 18:350 doi: 10.1186/s12870-018-1545-5 |
[58] |
Bögre L, Magyar Z, López-Juez E. 2008. New clues to organ size control in plants. Genome Biology 9:226 doi: 10.1186/gb-2008-9-7-226 |
[59] |
Chen Z, Lu X, Gao J, Xuan Y, Ren J. 2020. Integrating transcriptomic and metabolomic analysis of hormone pathways in Acer rubrum during developmental leaf senescence. BMC Plant Biology 20:410 doi: 10.1186/s12870-020-02628-5 |
[60] |
Hampel D, Mosandl A, Wüst M. 2005. Induction of de novo volatile terpene biosynthesis via cytosolic and plastidial pathways by methyl jasmonate in foliage of Vitis vinifera L. Journal of Agricultural and Food Chemistry 53:2652−57 doi: 10.1021/jf040421q |
[61] |
Perilli S, Di Mambro R, Sabatini S. 2012. Growth and development of the root apical meristem. Current Opinion in Plant Biology 15:17−23 doi: 10.1016/j.pbi.2011.10.006 |
[62] |
Frick EM, Strader LC. 2018. Roles for IBA-derived auxin in plant development. Journal of Experimental Botany 69:169−77 doi: 10.1093/jxb/erx298 |
[63] |
Hu S, Zhang M, Yang Y, Xuan W, Zou Z, et al. 2020. A novel insight into nitrogen and auxin signaling in lateral root formation in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC Plant Biology 20:232 doi: 10.1186/s12870-020-02448-7 |
[64] |
Cucinotta M, Cavalleri A, Chandler JW, Colombo L. 2021. Auxin and flower development: a blossoming field. Cold Spring Harbor Perspectives in Biology 13:a039974 doi: 10.1101/cshperspect.a039974 |
[65] |
Zhang Q, Gong M, Xu X, Li H, Deng W. 2022. Roles of auxin in the growth, development, and stress tolerance of horticultural plants. Cells 11:2761 doi: 10.3390/cells11172761 |
[66] |
Srikanth A, Schmid M. 2011. Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences 68:2013−37 doi: 10.1007/s00018-011-0673-y |
[67] |
Brioudes F, Joly C, Szécsi J, Varaud E, Leroux J, et al. 2009. Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. The Plant Journal 60:1070−80 doi: 10.1111/j.1365-313X.2009.04023.x |
[68] |
Leng P, Zhang Y, Du Y, Wang J, Jiang L, et al. 2018. Expression pattern of ABA metabolic and signalling genes during floral development and fruit set in sweet cherry. Plant Growth Regulation 84:71−80 doi: 10.1007/s10725-017-0322-z |
[69] |
Wu G, Zhu Z, Qiu Q, Fan X, Yuan D. 2022. Transcriptome Analysis Reveals the Regulatory Networks of Cytokinin in Promoting Floral Feminization in Castanea henryi. International Journal of Molecular Sciences 23:6389 doi: 10.3390/ijms23126389 |
[70] |
Huang G, Han M, Yao W, Wang Y. 2017. Transcriptome analysis reveals the regulation of brassinosteroids on petal growth in Gerbera hybrida. PeerJ 5:e3382 doi: 10.7717/peerj.3382 |
[71] |
Cheng Q, Bai S, Ge G, Li P, Liu L, et al. 2018. Study on differentially expressed genes related to defoliation traits in two alfalfa varieties based on RNA-Seq. BMC Genomics 19:807 doi: 10.1186/s12864-018-5180-1 |
[72] |
Kou X, Zhao X, Wu B, Wang C, Wu C, et al. 2022. Auxin response factors are ubiquitous in plant growth and development, and involved in crosstalk between plant hormones: a review. Applied Sciences 12:1360 doi: 10.3390/app12031360 |
[73] |
Si C, Zeng D, da Silva JAT, Qiu S, Duan J, et al. 2023. Genome-wide identification of Aux/IAA and ARF gene families reveal their potential roles in flower opening of Dendrobium officinale. BMC Genomics 24:199 doi: 10.1186/s12864-023-09263-y |
[74] |
Liu K, Feng S, Pan Y, Zhong J, Chen Y, et al. 2016. Transcriptome analysis and identification of genes associated with floral transition and flower development in sugar apple (Annona squamosa L.). Frontiers in Plant Science 7:1695 doi: 10.3389/fpls.2016.01695 |
[75] |
Li J, Min X, Luo K, Abdoulaye AH, Zhang X, et al. 2023. Molecular characterization of the GH3 family in alfalfa under abiotic stress. Gene 851:146982 doi: 10.1016/j.gene.2022.146982 |
[76] |
Ren H, Gray WM. 2015. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Molecular Plant 8:1153−64 doi: 10.1016/j.molp.2015.05.003 |
[77] |
Zhang Y, Ye T, She Z, Huang S, Wang L, et al. 2023. Small Auxin Up RNA (SAUR) gene family identification and functional genes exploration during the floral organ and fruit developmental stages in pineapple (Ananas comosus L.) and its response to salinity and drought stresses. International Journal of Biological Macromolecules 237:124061 doi: 10.1016/j.ijbiomac.2023.124061 |
[78] |
Tian Z, Han J, Che G, Hasi A. 2022. Genome-wide characterization and expression analysis of SAUR gene family in Melon (Cucumis melo L.). Planta 255:123 doi: 10.1007/s00425-022-03908-0 |
[79] |
Srivastava M, Srivastava AK, Orosa-Puente B, Campanaro A, Zhang C, et al. 2021. SUMO conjugation to BZR1 enables brassinosteroid signaling to integrate environmental cues to shape plant growth. Current Biology 31:668−69 doi: 10.1016/j.cub.2021.01.060 |
[80] |
Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, et al. 2005. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proceedings of the National Academy of Sciences of the United States of America 102:15253−58 doi: 10.1073/pnas.0504279102 |
[81] |
Di T, Zhao L, Chen H, Qian W, Wang P, et al. 2019. Transcriptomic and metabolic insights into the distinctive effects of exogenous melatonin and gibberellin on terpenoid synthesis and plant hormone signal transduction pathway in Camellia sinensis. Journal of Agricultural and Food Chemistry 67:4689−99 doi: 10.1021/acs.jafc.9b00503 |
[82] |
Liu W, Zhang Y, Wang L, Ahmad B, Shi X, et al. 2023. Integrated transcriptome and metabolome analysis unveiled the mechanisms of xenia effect and the role of different pollens on aroma formation in 'Yali' pear (Pyrus bretschneideri Rehd). Scientia Horticulturae 307:111503 doi: 10.1016/j.scienta.2022.111503 |
[83] |
Urrutia M, Rambla JL, Alexiou KG, Granell A, Monfort A. 2017. Genetic analysis of the wild strawberry (Fragaria vesca) volatile composition. Plant Physiology and Biochemistry 121:99−117 doi: 10.1016/j.plaphy.2017.10.015 |
[84] |
Fei X, Qi Y, Lei Y, Wang S, Hu H, et al. 2021. Transcriptome and metabolome dynamics explain aroma differences between green and red prickly ash fruit. Foods 10:391 doi: 10.3390/foods10020391 |
[85] |
Li H, Li J, Dong Y, Hao H, Ling Z, et al. 2019. Time-series transcriptome provides insights into the gene regulation network involved in the volatile terpenoid metabolism during the flower development of lavender. BMC Plant Biology 19:313 doi: 10.1186/s12870-019-1908-6 |
[86] |
Zhu L, Liao J, Liu Y, Zhou C, Wang X, et al. 2022. Integrative metabolome and transcriptome analyses reveal the molecular mechanism underlying variation in floral scent during flower development of Chrysanthemum indicum var. aromaticum. Frontiers in Plant Science 13:919151 doi: 10.3389/fpls.2022.919151 |
[87] |
Yue X, Ren R, Ma X, Fang Y, Zhang Z, et al. 2020. Dynamic changes in monoterpene accumulation and biosynthesis during grape ripening in three Vitis vinifera L. cultivars. Food Research International 137:109736 doi: 10.1016/j.foodres.2020.109736 |
[88] |
Tang D, Shen Y, Li F, Yue R, Duan J, et al. 2022. Integrating metabolite and transcriptome analysis revealed the different mechanisms of characteristic compound biosynthesis and transcriptional regulation in tea flowers. Frontiers in Plant Science 13:1016692 doi: 10.3389/fpls.2022.1016692 |
[89] |
Yang X, Yue Y, Li H, Ding W, Chen G, et al. 2018. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans. Horticulture Research 5:72 doi: 10.1038/s41438-018-0108-0 |
[90] |
Wang W, Feng J, Wei L, Khalil-Ur-Rehman M, Nieuwenhuizen NJ, et al. 2021. Transcriptomics integrated with free and bound terpenoid aroma profiling during "shine muscat" (Vitis labrusca × V. vinifera) grape berry development reveals coordinate regulation of MEP pathway and terpene synthase gene expression. Journal of Agricultural and Food Chemistry 69:1413−29 doi: 10.1021/acs.jafc.0c06591 |
[91] |
Zhang C, Liu H, Hu S, Zong Y, Xia H, et al. 2022. Transcriptomic profiling of the floral fragrance biosynthesis pathway of Liriodendron and functional characterization of the LtuDXR gene. Plant Science 314:111124 doi: 10.1016/j.plantsci.2021.111124 |
[92] |
Zhu C, Zhang S, Fu H, Zhou C, Chen L, et al. 2019. Transcriptome and phytochemical analyses provide new insights into long non-coding RNAs modulating characteristic secondary metabolites of oolong tea (Camellia sinensis) in solar-withering. Frontiers in Plant Science 10:1638 doi: 10.3389/fpls.2019.01638 |
[93] |
Hu Z, Tang B, Wu Q, Zheng J, Leng P, et al. 2017. Transcriptome sequencing analysis reveals a difference in monoterpene biosynthesis between scented Lilium 'Siberia' and unscented Lilium 'Novano'. Frontiers in Plant Science 8:1351 doi: 10.3389/fpls.2017.01351 |
[94] |
Yan W, Yang Y, Wu Y, Yu J, Zhang J, et al. 2021. Isopentenyl diphosphate isomerase (IPI) gene silencing negatively affects patchouli alcohol biosynthesis in Pogostemon cablin. Plant Molecular Biology Reporter 39:557−65 doi: 10.1007/s11105-020-01269-0 |
[95] |
Yang J, Adhikari MN, Liu H, Xu H, He G, et al. 2012. Characterization and functional analysis of the genes encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase and 1-deoxy-D-xylulose-5-phosphate synthase, the two enzymes in the MEP pathway, from Amomum villosum Lour. Molecular Biology Reports 39:8287−96 doi: 10.1007/s11033-012-1676-y |
[96] |
Page JE, Hause G, Raschke M, Gao W, Schmidt J, et al. 2004. Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing. Plant Physiology 134:1401−13 doi: 10.1104/pp.103.038133 |
[97] |
Bouvier F, Suire C, d'Harlingue A, Backhaus RA, Camara B. 2000. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. The Plant Journal 24:241−52 doi: 10.1046/j.1365-313x.2000.00875.x |
[98] |
Hsiao YY, Jeng MF, Tsai WC, Chuang YC, Li CY, et al. 2008. A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD (X)2–4D motif. The Plant Journal 55:719−33 doi: 10.1111/j.1365-313X.2008.03547.x |
[99] |
Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E. 2005. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. The Plant Journal 42:757−71 doi: 10.1111/j.1365-313X.2005.02417.x |
[100] |
Wang X, Zeng Y, Nieuwenhuizen NJ, Atkinson RG. 2021. TPS-b family genes involved in signature aroma terpenes emission in ripe kiwifruit. Plant Signaling & Behavior 16:1962657 doi: 10.1080/15592324.2021.1962657 |
[101] |
Abbas F, Guo S, Zhou Y, Wu J, Amanullah S, et al. 2022. Metabolome and transcriptome analysis of terpene synthase genes and their putative role in floral aroma production in Litchi chinensis. Physiologia Plantarum 174:e13796 doi: 10.1111/ppl.13796 |
[102] |
Mostafa S, Wang Y, Zeng W, Jin B. 2022. Floral scents and fruit aromas: Functions, compositions, biosynthesis, and regulation. Frontiers in Plant Science 13:860157 doi: 10.3389/fpls.2022.860157 |
[103] |
Yang G, Qin Y, Jia Y, Xie X, Li D, et al. 2023. Transcriptomic and metabolomic data reveal key genes that are involved in the phenylpropanoid pathway and regulate the floral fragrance of Rhododendron fortunei. BMC Plant Biology 23:8 doi: 10.1186/s12870-022-04016-7 |
[104] |
Shang J, Tian J, Cheng H, Yan Q, Li L, et al. 2020. The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biology 21:200 doi: 10.1186/s13059-019-1906-x |
[105] |
Fu J, Huang S, Qian J, Qing H, Wan Z, et al. 2022. Genome-wide identification of petunia HSF genes and potential function of PhHSF19 in benzenoid/phenylpropanoid biosynthesis. International Journal of Molecular Sciences 23:2974 doi: 10.3390/ijms23062974 |
[106] |
Wang X, Song Z, Ti Y, Ma K, Li Q. 2022. Comparative transcriptome analysis linked to key volatiles reveals molecular mechanisms of aroma compound biosynthesis in Prunus mume. BMC Plant Biology 22:395 doi: 10.1186/s12870-022-03779-3 |
[107] |
Verdonk JC, De Vos CHR, Verhoeven HA, Haring MA, Van Tunen AJ, et al. 2003. Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 62:997−1008 doi: 10.1016/S0031-9422(02)00707-0 |
[108] |
Deng Y, Sun X, Gu C, Jia X, Liang L, et al. 2017. Identification of pre-fertilization reproductive barriers and the underlying cytological mechanism in crosses among three petal-types of Jasminum sambac and their relevance to phylogenetic relationships. PLoS ONE 12:e0176026 doi: 10.1371/journal.pone.0176026 |
[109] |
Rastogi S, Kumar R, Chanotiya CS, Shanker K, Gupta MM, et al. 2013. 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis. Plant and Cell Physiology 54:1238−52 doi: 10.1093/pcp/pct073 |
[110] |
Wang C, Yu J, Cai Y, Zhu P, Liu C, et al. 2016. Characterization and functional analysis of 4-coumarate: CoA ligase genes in mulberry. PLoS ONE 11:e0155814 doi: 10.1371/journal.pone.0155814 |
[111] |
Kutty NN, Ghissing U, Mitra A. 2021. Revealing floral metabolite network in tuberose that underpins scent volatiles synthesis, storage and emission. Plant Molecular Biology 106:533−54 doi: 10.1007/s11103-021-01171-7 |
[112] |
Tong Z, Li H, Zhang R, Ma L, Dong J, et al. 2015. Co-downregulation of the hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase and coumarate 3-hydroxylase significantly increases cellulose content in transgenic alfalfa (Medicago sativa L.). Plant Science 239:230−37 doi: 10.1016/j.plantsci.2015.08.005 |
[113] |
Zhang T, Bao F, Ding A, Yang Y, Cheng T, et al. 2022. Comprehensive analysis of endogenous volatile compounds, transcriptome, and enzyme activity reveals PmCAD1 involved in cinnamyl alcohol synthesis in Prunus mume. Frontiers in Plant Science 13:820742 doi: 10.3389/fpls.2022.820742 |
[114] |
Liu Z, Mohsin A, Wang Z, Zhu X, Zhuang Y, et al. 2021. Enhanced biosynthesis of chlorogenic acid and its derivatives in methyl-jasmonate-treated Gardenia jasminoides cells: a study on metabolic and transcriptional responses of cells. Frontiers in Bioengineering and Biotechnology 8:604957 doi: 10.3389/fbioe.2020.604957 |
[115] |
Wang Z, Du H, Zhai R, Song L, Ma F, Xu L. 2017. Transcriptome analysis reveals candidate genes related to color fading of 'Red Bartlett' (Pyrus communis L.). Frontiers in Plant Science 8:455 doi: 10.3389/fpls.2017.00455 |
[116] |
Chuang YC, Hung YC, Tsai WC, Chen WH, Chen HH. 2018. PbbHLH4 regulates floral monoterpene biosynthesis in Phalaenopsis orchids. Journal of Experimental Botany 69:4363−77 doi: 10.1093/jxb/ery246 |
[117] |
Ding W, Ouyang Q, Li Y, Shi T, Li L, et al. 2020. Genome-wide investigation of WRKY transcription factors in sweet osmanthus and their potential regulation of aroma synthesis. Tree Physiology 40:557−72 doi: 10.1093/treephys/tpz129 |
[118] |
Yu Y, Liu Z, Wang L, Kim SG, Seo PJ, et al. 2016. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana. The Plant Journal 85:96−106 doi: 10.1111/tpj.13092 |
[119] |
Lei R, Li X, Ma Z, Lv Y, Hu Y, et al. 2017. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function. The Plant Journal 91:962−76 doi: 10.1111/tpj.13619 |
[120] |
Zhang Y, Cao G, Qu L, Gu H. 2009. Characterization of Arabidopsis MYB transcription factor gene AtMYB17 and its possible regulation by LEAFY and AGL15. Journal of Genetics and Genomics 36:99−107 doi: 10.1016/S1673-8527(08)60096-X |
[121] |
Xu Y, Zhu C, Xu C, Sun J, Grierson D, et al. 2019. Integration of metabolite profiling and transcriptome analysis reveals genes related to volatile terpenoid metabolism in finger citron (C. medica var. sarcodactylis). Molecules 24:2564 doi: 10.3390/molecules24142564 |
[122] |
Hong G, Xue X, Mao Y, Wang L, Chen X. 2012. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. The Plant Cell 24:2635−48 doi: 10.1105/tpc.112.098749 |
[123] |
Muhlemann JK, Klempien A, Dudareva N. 2014. Floral volatiles: from biosynthesis to function. Plant, Cell & Environment 37:1936−49 doi: 10.1111/pce.12314 |
[124] |
Ben Zvi MM, Negre-Zakharov F, Masci T, Ovadis M, Shklarman E, et al. 2008. Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers. Plant Biotechnology Journal 6:403−15 doi: 10.1111/j.1467-7652.2008.00329.x |