[1]
|
Mu L, Liu Y. 2007. Genetic diversity of Tilia amurensis populations in different geographical distribution regions. Chinese Journal of Plant Ecology 31:1190−98 doi: 10.17521/cjpe.2007.0148
CrossRef Google Scholar
|
[2]
|
Liu Y, Chang Q, Tang Z, Wu K, Abozeid A, et al. 2022. The interrelationship between latitudinal differences and metabolic differences in the natural distribution area of Tilia amurensis Rupr. Forests 13:1507 doi: 10.3390/f13091507
CrossRef Google Scholar
|
[3]
|
Kwon EB, Kim YS, Han SM, Kim SG, Choi JG. 2022. The protective effect of Tilia amurensis honey on influenza A virus infection through stimulation of interferon-mediated IFITM3 signaling. Biomedicine & Pharmacotherapy 153:113259 doi: 10.1016/j.biopha.2022.113259
CrossRef Google Scholar
|
[4]
|
Chun SW, Lee JW, Ahn JY. 2022. Development and characterization of novel microsatellite markers in Tilia amurensis Rupr. using next-generation sequencing. Molecular Biology Reports 49:1637−41 doi: 10.1007/s11033-021-07035-z
CrossRef Google Scholar
|
[5]
|
Dudareva N, Klempien A, Muhlemann JK, Kaplan I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198:16−32 doi: 10.1111/nph.12145
CrossRef Google Scholar
|
[6]
|
Abbas F, Zhou Y, He J, Ke Y, Qin W, et al. 2021. Metabolite and transcriptome profiling analysis revealed that melatonin positively regulates floral scent production in Hedychium coronarium. Frontiers in Plant Science 12:808899 doi: 10.3389/fpls.2021.808899
CrossRef Google Scholar
|
[7]
|
Li X, Cai K, Fan Z, Wang J, Wang L, et al. 2022. Dissection of transcriptome and metabolome insights into the isoquinoline alkaloid biosynthesis during stem development in Phellodendron amurense (Rupr.). Plant Science 325:111461 doi: 10.1016/j.plantsci.2022.111461
CrossRef Google Scholar
|
[8]
|
Ali M, Hussain RM, Rehman NU, She G, Li P, et al. 2018. De novo transcriptome sequencing and metabolite profiling analyses reveal the complex metabolic genes involved in the terpenoid biosynthesis in Blue Anise Sage (Salvia guaranitica L.). DNA Research 25:597−617 doi: 10.1093/dnares/dsy028
CrossRef Google Scholar
|
[9]
|
Mu L, Zheng J, Wang Y, Liu L. 2009. Chemical compositions and geographic variation in flowers and fruits of Tilia amurensis. Scientia Silvae Sinicae 45:46−52 doi: 10.3321/j.issn:1001-7488.2009.04.008
CrossRef Google Scholar
|
[10]
|
Izawa T. 2021. What is going on with the hormonal control of flowering in plants? The Plant Journal 105:431−45 doi: 10.1111/tpj.15036
CrossRef Google Scholar
|
[11]
|
Janowska B, Andrzejak R. 2022. Cytokinins and gibberellins stimulate the flowering and post-harvest longevity of flowers and leaves of Calla lilies (Zantedeschia Spreng.) with colourful inflorescence spathes. Agronomy 12:1859 doi: 10.3390/agronomy12081859
CrossRef Google Scholar
|
[12]
|
Xu Y, Prunet N, Gan ES, Wang Y, Stewart D, et al. 2018. SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis. The EMBO Journal 37:e97499 doi: 10.15252/embj.201797499
CrossRef Google Scholar
|
[13]
|
Han Y, Yang H, Jiao Y. 2014. Regulation of inflorescence architecture by cytokinins. Frontiers in Plant Science 5:669 doi: 10.3389/fpls.2014.00669
CrossRef Google Scholar
|
[14]
|
Dar RA, Nisar S, Tahir I. 2021. Ethylene: a key player in ethylene sensitive flower senescence: a review. Scientia Horticulturae 290:110491 doi: 10.1016/j.scienta.2021.110491
CrossRef Google Scholar
|
[15]
|
Zhang L, Song C, Guo D, Guo L, Hou X, et al. 2022. Identification of differentially expressed miRNAs and their target genes in response to brassinolide treatment on flowering of tree peony (Paeonia ostii). Plant Signaling & Behavior 17:2056364 doi: 10.1080/15592324.2022.2056364
CrossRef Google Scholar
|
[16]
|
Sheng J, Li X, Zhang D. 2022. Gibberellins, brassinolide, and ethylene signaling were involved in flower differentiation and development in Nelumbo nucifera. Horticultural Plant Journal 8:243−50 doi: 10.1016/j.hpj.2021.06.002
CrossRef Google Scholar
|
[17]
|
Ke Y, Abbas F, Zhou Y, Yu R, Fan Y. 2021. Auxin-responsive R2R3-MYB transcription factors HcMYB1 and HcMYB2 activate volatile biosynthesis in Hedychium coronarium flowers. Frontiers in Plant Science 12:710826 doi: 10.3389/fpls.2021.710826
CrossRef Google Scholar
|
[18]
|
Qiao Z, Hu H, Shi S, Yuan X, Yan B, et al. 2021. An update on the function, biosynthesis and regulation of floral volatile terpenoids. Horticulturae 7:451 doi: 10.3390/horticulturae7110451
CrossRef Google Scholar
|
[19]
|
Colquhoun TA, Clark DG. 2011. Unraveling the regulation of floral fragrance biosynthesis. Plant Signaling & Behavior 6:378−81 doi: 10.4161/psb.6.3.14339
CrossRef Google Scholar
|
[20]
|
Sapir-Mir M, Mett A, Belausov E, Tal-Meshulam S, Frydman A, et al. 2008. Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiology 148:1219−28 doi: 10.1104/pp.108.127951
CrossRef Google Scholar
|
[21]
|
Xu Q, He Y, Yan X, Zhao S, Zhu J, et al. 2018. Unraveling a crosstalk regulatory network of temporal aroma accumulation in tea plant (Camellia sinensis) leaves by integration of metabolomics and transcriptomics. Environmental and Experimental Botany 149:81−94 doi: 10.1016/j.envexpbot.2018.02.005
CrossRef Google Scholar
|
[22]
|
Wei G, Tian P, Zhang F, Qin H, Miao H, et al. 2016. Integrative analyses of nontargeted volatile profiling and transcriptome data provide molecular insight into VOC diversity in cucumber plants (Cucumis sativus). Plant Physiology 172:603−18 doi: 10.1104/pp.16.01051
CrossRef Google Scholar
|
[23]
|
Zhou C, Zhu C, Tian C, Xu K, Huang L, et al. 2022. Integrated volatile metabolome, multi-flux full-length sequencing, and transcriptome analyses provide insights into the aroma formation of postharvest jasmine (Jasminum sambac) during flowering. Postharvest Biology and Technology 183:111726 doi: 10.1016/j.postharvbio.2021.111726
CrossRef Google Scholar
|
[24]
|
Yan J, Wang H, Wang Y, Xu S, Wan Y, et al. 2021. Integrated metabolome and transcriptome analysis reveals candidate genes involved in metabolism of terpenoids and phthalides in celery seeds. Industrial Crops and Products 172:114011 doi: 10.1016/j.indcrop.2021.114011
CrossRef Google Scholar
|
[25]
|
Cheng S, Fu X, Mei X, Zhou Y, Du B, et al. 2016. Regulation of biosynthesis and emission of volatile phenylpropanoids/benzenoids in petunia× hybrida flowers by multi-factors of circadian clock, light, and temperature. Plant Physiology and Biochemistry 107:1−8 doi: 10.1016/j.plaphy.2016.05.026
CrossRef Google Scholar
|
[26]
|
Mei X, Wan S, Lin C, Zhou C, Hu L, et al. 2021. Integration of metabolome and transcriptome reveals the relationship of benzenoid–phenylpropanoid pigment and aroma in purple tea flowers. Frontiers in Plant Science 12:762330 doi: 10.3389/fpls.2021.762330
CrossRef Google Scholar
|
[27]
|
Dong N, Lin H. 2021. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. Journal of Integrative Plant Biology 63:180−209 doi: 10.1111/jipb.13054
CrossRef Google Scholar
|
[28]
|
Tohge T, de Souza LP, Fernie AR. 2017. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. Journal of Experimental Botany 68:4013−28 doi: 10.1093/jxb/erx177
CrossRef Google Scholar
|
[29]
|
Wang S, Alseekh S, Fernie AR, Luo J. 2019. The structure and function of major plant metabolite modifications. Molecular Plant 12:899−919 doi: 10.1016/j.molp.2019.06.001
CrossRef Google Scholar
|
[30]
|
Li W, Lu X, Li J. 2022. The effect of organic nutrient solution on flavor in ripe cherry tomato fruit—Transcriptome and metabolomic analyses. Environmental and Experimental Botany 194:104721 doi: 10.1016/j.envexpbot.2021.104721
CrossRef Google Scholar
|
[31]
|
Pan Q, Wang Q, Yuan F, Xing S, Zhao J, et al. 2012. Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS ONE 7:e43038 doi: 10.1371/journal.pone.0043038
CrossRef Google Scholar
|
[32]
|
Xu Q, Wang S, Hong H, Zhou Y. 2019. Transcriptomic profiling of the flower scent biosynthesis pathway of Cymbidium faberi Rolfe and functional characterization of its jasmonic acid carboxyl methyltransferase gene. BMC Genomics 20:125 doi: 10.1186/s12864-019-5501-z
CrossRef Google Scholar
|
[33]
|
Ding K, Pei T, Bai Z, Jia Y, Ma P, et al. 2017. SmMYB36, a novel R2R3-MYB transcription factor, enhances tanshinone accumulation and decreases phenolic acid content in Salvia miltiorrhiza hairy roots. Scientific Reports 7:5104 doi: 10.1038/s41598-017-04909-w
CrossRef Google Scholar
|
[34]
|
Bedon F, Bomal C, Caron S, Levasseur C, Boyle B, et al. 2010. Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses. Journal of Experimental Botany 61:3847−64 doi: 10.1093/jxb/erq196
CrossRef Google Scholar
|
[35]
|
Colquhoun TA, Kim JY, Wedde AE, Levin LA, Schmitt KC, et al. 2011. PhMYB4 fine-tunes the floral volatile signature of Petunia× hybrida through PhC4H. Journal of Experimental Botany 62:1133−43 doi: 10.1093/jxb/erq342
CrossRef Google Scholar
|
[36]
|
Verdonk JC, Haring MA, Van Tunen AJ, Schuurink RC. 2005. ODORANT 1 regulates fragrance biosynthesis in petunia flowers. The Plant Cell 17:1612−24 doi: 10.1105/tpc.104.028837
CrossRef Google Scholar
|
[37]
|
Yang J, Zhang J, Wang Z, Zhu Q, Wang W. 2001. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology 127:315−23 doi: 10.1104/pp.127.1.315
CrossRef Google Scholar
|
[38]
|
Shi W, Li H, Liu T, Polle A, Peng C, et al. 2015. Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc. Plant, Cell & Environment 38:207−23 doi: 10.1111/pce.12434
CrossRef Google Scholar
|
[39]
|
Cai K, Zhang D, Li X, Zhang Q, Jiang L, et al. 2023. Exogenous phytohormone application and transcriptome analysis provides insights for adventitious root formation in Taxus cuspidata S. et Z. Plant Growth Regulation 100:33−53 doi: 10.1007/s10725-022-00934-6
CrossRef Google Scholar
|
[40]
|
Zou S, Wu J, Shahid MQ, He Y, Lin S, et al. 2020. Identification of key taste components in loquat using widely targeted metabolomics. Food Chemistry 323:126822 doi: 10.1016/j.foodchem.2020.126822
CrossRef Google Scholar
|
[41]
|
Li X, Li Y, Zhao M, Hu Y, Meng F, et al. 2021. Molecular and metabolic insights into anthocyanin biosynthesis for leaf color change in chokecherry (Padus virginiana). International Journal of Molecular Sciences 22:10697 doi: 10.3390/ijms221910697
CrossRef Google Scholar
|
[42]
|
Yue Y, Liu J, Shi T, Chen M, Li Y, et al. 2019. Integrating transcriptomic and GC-MS metabolomic analysis to characterize color and aroma formation during tepal development in Lycoris longituba. Plants 8:53 doi: 10.3390/plants8030053
CrossRef Google Scholar
|
[43]
|
Ibragic S, Barbini S, Oberlerchner JT, Potthast A, Rosenau T, et al. 2021. Antioxidant properties and qualitative analysis of phenolic constituents in Ephedra spp. by HPTLC together with injection port derivatization GC–MS. Journal of Chromatography B 1180:122877 doi: 10.1016/j.jchromb.2021.122877
CrossRef Google Scholar
|
[44]
|
Qiu W, Su W, Cai Z, Dong L, Li C, et al. 2020. Combined analysis of transcriptome and metabolome reveals the potential mechanism of coloration and fruit quality in yellow and purple Passiflora edulis Sims. Journal of Agricultural and Food Chemistry 68:12096−106 doi: 10.1021/acs.jafc.0c03619
CrossRef Google Scholar
|
[45]
|
Xie C, Mao X, Huang J, Ding Y, Wu J, et al. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research 39:W316−W322 doi: 10.1093/nar/gkr483
CrossRef Google Scholar
|
[46]
|
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009
CrossRef Google Scholar
|
[47]
|
Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890 doi: 10.1093/bioinformatics/bty560
CrossRef Google Scholar
|
[48]
|
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52 doi: 10.1038/nbt.1883
CrossRef Google Scholar
|
[49]
|
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389−402 doi: 10.1093/nar/25.17.3389
CrossRef Google Scholar
|
[50]
|
Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323 doi: 10.1186/1471-2105-12-323
CrossRef Google Scholar
|
[51]
|
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28:511−15 doi: 10.1038/nbt.1621
CrossRef Google Scholar
|
[52]
|
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8
CrossRef Google Scholar
|
[53]
|
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. 2010. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research 38:W64−W70 doi: 10.1093/nar/gkq310
CrossRef Google Scholar
|
[54]
|
Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, et al. 2016. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Molecular Plant 9:1667−70 doi: 10.1016/j.molp.2016.09.014
CrossRef Google Scholar
|
[55]
|
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504 doi: 10.1101/gr.1239303
CrossRef Google Scholar
|
[56]
|
Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3:1101−8 doi: 10.1038/nprot.2008.73
CrossRef Google Scholar
|
[57]
|
Yu D, Qanmber G, Lu L, Wang L, Li J, et al. 2018. Genome-wide analysis of cotton GH3 subfamily II reveals functional divergence in fiber development, hormone response and plant architecture. BMC Plant Biology 18:350 doi: 10.1186/s12870-018-1545-5
CrossRef Google Scholar
|
[58]
|
Bögre L, Magyar Z, López-Juez E. 2008. New clues to organ size control in plants. Genome Biology 9:226 doi: 10.1186/gb-2008-9-7-226
CrossRef Google Scholar
|
[59]
|
Chen Z, Lu X, Gao J, Xuan Y, Ren J. 2020. Integrating transcriptomic and metabolomic analysis of hormone pathways in Acer rubrum during developmental leaf senescence. BMC Plant Biology 20:410 doi: 10.1186/s12870-020-02628-5
CrossRef Google Scholar
|
[60]
|
Hampel D, Mosandl A, Wüst M. 2005. Induction of de novo volatile terpene biosynthesis via cytosolic and plastidial pathways by methyl jasmonate in foliage of Vitis vinifera L. Journal of Agricultural and Food Chemistry 53:2652−57 doi: 10.1021/jf040421q
CrossRef Google Scholar
|
[61]
|
Perilli S, Di Mambro R, Sabatini S. 2012. Growth and development of the root apical meristem. Current Opinion in Plant Biology 15:17−23 doi: 10.1016/j.pbi.2011.10.006
CrossRef Google Scholar
|
[62]
|
Frick EM, Strader LC. 2018. Roles for IBA-derived auxin in plant development. Journal of Experimental Botany 69:169−77 doi: 10.1093/jxb/erx298
CrossRef Google Scholar
|
[63]
|
Hu S, Zhang M, Yang Y, Xuan W, Zou Z, et al. 2020. A novel insight into nitrogen and auxin signaling in lateral root formation in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC Plant Biology 20:232 doi: 10.1186/s12870-020-02448-7
CrossRef Google Scholar
|
[64]
|
Cucinotta M, Cavalleri A, Chandler JW, Colombo L. 2021. Auxin and flower development: a blossoming field. Cold Spring Harbor Perspectives in Biology 13:a039974 doi: 10.1101/cshperspect.a039974
CrossRef Google Scholar
|
[65]
|
Zhang Q, Gong M, Xu X, Li H, Deng W. 2022. Roles of auxin in the growth, development, and stress tolerance of horticultural plants. Cells 11:2761 doi: 10.3390/cells11172761
CrossRef Google Scholar
|
[66]
|
Srikanth A, Schmid M. 2011. Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences 68:2013−37 doi: 10.1007/s00018-011-0673-y
CrossRef Google Scholar
|
[67]
|
Brioudes F, Joly C, Szécsi J, Varaud E, Leroux J, et al. 2009. Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. The Plant Journal 60:1070−80 doi: 10.1111/j.1365-313X.2009.04023.x
CrossRef Google Scholar
|
[68]
|
Leng P, Zhang Y, Du Y, Wang J, Jiang L, et al. 2018. Expression pattern of ABA metabolic and signalling genes during floral development and fruit set in sweet cherry. Plant Growth Regulation 84:71−80 doi: 10.1007/s10725-017-0322-z
CrossRef Google Scholar
|
[69]
|
Wu G, Zhu Z, Qiu Q, Fan X, Yuan D. 2022. Transcriptome Analysis Reveals the Regulatory Networks of Cytokinin in Promoting Floral Feminization in Castanea henryi. International Journal of Molecular Sciences 23:6389 doi: 10.3390/ijms23126389
CrossRef Google Scholar
|
[70]
|
Huang G, Han M, Yao W, Wang Y. 2017. Transcriptome analysis reveals the regulation of brassinosteroids on petal growth in Gerbera hybrida. PeerJ 5:e3382 doi: 10.7717/peerj.3382
CrossRef Google Scholar
|
[71]
|
Cheng Q, Bai S, Ge G, Li P, Liu L, et al. 2018. Study on differentially expressed genes related to defoliation traits in two alfalfa varieties based on RNA-Seq. BMC Genomics 19:807 doi: 10.1186/s12864-018-5180-1
CrossRef Google Scholar
|
[72]
|
Kou X, Zhao X, Wu B, Wang C, Wu C, et al. 2022. Auxin response factors are ubiquitous in plant growth and development, and involved in crosstalk between plant hormones: a review. Applied Sciences 12:1360 doi: 10.3390/app12031360
CrossRef Google Scholar
|
[73]
|
Si C, Zeng D, da Silva JAT, Qiu S, Duan J, et al. 2023. Genome-wide identification of Aux/IAA and ARF gene families reveal their potential roles in flower opening of Dendrobium officinale. BMC Genomics 24:199 doi: 10.1186/s12864-023-09263-y
CrossRef Google Scholar
|
[74]
|
Liu K, Feng S, Pan Y, Zhong J, Chen Y, et al. 2016. Transcriptome analysis and identification of genes associated with floral transition and flower development in sugar apple (Annona squamosa L.). Frontiers in Plant Science 7:1695 doi: 10.3389/fpls.2016.01695
CrossRef Google Scholar
|
[75]
|
Li J, Min X, Luo K, Abdoulaye AH, Zhang X, et al. 2023. Molecular characterization of the GH3 family in alfalfa under abiotic stress. Gene 851:146982 doi: 10.1016/j.gene.2022.146982
CrossRef Google Scholar
|
[76]
|
Ren H, Gray WM. 2015. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Molecular Plant 8:1153−64 doi: 10.1016/j.molp.2015.05.003
CrossRef Google Scholar
|
[77]
|
Zhang Y, Ye T, She Z, Huang S, Wang L, et al. 2023. Small Auxin Up RNA (SAUR) gene family identification and functional genes exploration during the floral organ and fruit developmental stages in pineapple (Ananas comosus L.) and its response to salinity and drought stresses. International Journal of Biological Macromolecules 237:124061 doi: 10.1016/j.ijbiomac.2023.124061
CrossRef Google Scholar
|
[78]
|
Tian Z, Han J, Che G, Hasi A. 2022. Genome-wide characterization and expression analysis of SAUR gene family in Melon (Cucumis melo L.). Planta 255:123 doi: 10.1007/s00425-022-03908-0
CrossRef Google Scholar
|
[79]
|
Srivastava M, Srivastava AK, Orosa-Puente B, Campanaro A, Zhang C, et al. 2021. SUMO conjugation to BZR1 enables brassinosteroid signaling to integrate environmental cues to shape plant growth. Current Biology 31:668−69 doi: 10.1016/j.cub.2021.01.060
CrossRef Google Scholar
|
[80]
|
Poppenberger B, Fujioka S, Soeno K, George GL, Vaistij FE, et al. 2005. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proceedings of the National Academy of Sciences of the United States of America 102:15253−58 doi: 10.1073/pnas.0504279102
CrossRef Google Scholar
|
[81]
|
Di T, Zhao L, Chen H, Qian W, Wang P, et al. 2019. Transcriptomic and metabolic insights into the distinctive effects of exogenous melatonin and gibberellin on terpenoid synthesis and plant hormone signal transduction pathway in Camellia sinensis. Journal of Agricultural and Food Chemistry 67:4689−99 doi: 10.1021/acs.jafc.9b00503
CrossRef Google Scholar
|
[82]
|
Liu W, Zhang Y, Wang L, Ahmad B, Shi X, et al. 2023. Integrated transcriptome and metabolome analysis unveiled the mechanisms of xenia effect and the role of different pollens on aroma formation in 'Yali' pear (Pyrus bretschneideri Rehd). Scientia Horticulturae 307:111503 doi: 10.1016/j.scienta.2022.111503
CrossRef Google Scholar
|
[83]
|
Urrutia M, Rambla JL, Alexiou KG, Granell A, Monfort A. 2017. Genetic analysis of the wild strawberry (Fragaria vesca) volatile composition. Plant Physiology and Biochemistry 121:99−117 doi: 10.1016/j.plaphy.2017.10.015
CrossRef Google Scholar
|
[84]
|
Fei X, Qi Y, Lei Y, Wang S, Hu H, et al. 2021. Transcriptome and metabolome dynamics explain aroma differences between green and red prickly ash fruit. Foods 10:391 doi: 10.3390/foods10020391
CrossRef Google Scholar
|
[85]
|
Li H, Li J, Dong Y, Hao H, Ling Z, et al. 2019. Time-series transcriptome provides insights into the gene regulation network involved in the volatile terpenoid metabolism during the flower development of lavender. BMC Plant Biology 19:313 doi: 10.1186/s12870-019-1908-6
CrossRef Google Scholar
|
[86]
|
Zhu L, Liao J, Liu Y, Zhou C, Wang X, et al. 2022. Integrative metabolome and transcriptome analyses reveal the molecular mechanism underlying variation in floral scent during flower development of Chrysanthemum indicum var. aromaticum. Frontiers in Plant Science 13:919151 doi: 10.3389/fpls.2022.919151
CrossRef Google Scholar
|
[87]
|
Yue X, Ren R, Ma X, Fang Y, Zhang Z, et al. 2020. Dynamic changes in monoterpene accumulation and biosynthesis during grape ripening in three Vitis vinifera L. cultivars. Food Research International 137:109736 doi: 10.1016/j.foodres.2020.109736
CrossRef Google Scholar
|
[88]
|
Tang D, Shen Y, Li F, Yue R, Duan J, et al. 2022. Integrating metabolite and transcriptome analysis revealed the different mechanisms of characteristic compound biosynthesis and transcriptional regulation in tea flowers. Frontiers in Plant Science 13:1016692 doi: 10.3389/fpls.2022.1016692
CrossRef Google Scholar
|
[89]
|
Yang X, Yue Y, Li H, Ding W, Chen G, et al. 2018. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans. Horticulture Research 5:72 doi: 10.1038/s41438-018-0108-0
CrossRef Google Scholar
|
[90]
|
Wang W, Feng J, Wei L, Khalil-Ur-Rehman M, Nieuwenhuizen NJ, et al. 2021. Transcriptomics integrated with free and bound terpenoid aroma profiling during "shine muscat" (Vitis labrusca × V. vinifera) grape berry development reveals coordinate regulation of MEP pathway and terpene synthase gene expression. Journal of Agricultural and Food Chemistry 69:1413−29 doi: 10.1021/acs.jafc.0c06591
CrossRef Google Scholar
|
[91]
|
Zhang C, Liu H, Hu S, Zong Y, Xia H, et al. 2022. Transcriptomic profiling of the floral fragrance biosynthesis pathway of Liriodendron and functional characterization of the LtuDXR gene. Plant Science 314:111124 doi: 10.1016/j.plantsci.2021.111124
CrossRef Google Scholar
|
[92]
|
Zhu C, Zhang S, Fu H, Zhou C, Chen L, et al. 2019. Transcriptome and phytochemical analyses provide new insights into long non-coding RNAs modulating characteristic secondary metabolites of oolong tea (Camellia sinensis) in solar-withering. Frontiers in Plant Science 10:1638 doi: 10.3389/fpls.2019.01638
CrossRef Google Scholar
|
[93]
|
Hu Z, Tang B, Wu Q, Zheng J, Leng P, et al. 2017. Transcriptome sequencing analysis reveals a difference in monoterpene biosynthesis between scented Lilium 'Siberia' and unscented Lilium 'Novano'. Frontiers in Plant Science 8:1351 doi: 10.3389/fpls.2017.01351
CrossRef Google Scholar
|
[94]
|
Yan W, Yang Y, Wu Y, Yu J, Zhang J, et al. 2021. Isopentenyl diphosphate isomerase (IPI) gene silencing negatively affects patchouli alcohol biosynthesis in Pogostemon cablin. Plant Molecular Biology Reporter 39:557−65 doi: 10.1007/s11105-020-01269-0
CrossRef Google Scholar
|
[95]
|
Yang J, Adhikari MN, Liu H, Xu H, He G, et al. 2012. Characterization and functional analysis of the genes encoding 1-deoxy-D-xylulose-5-phosphate reductoisomerase and 1-deoxy-D-xylulose-5-phosphate synthase, the two enzymes in the MEP pathway, from Amomum villosum Lour. Molecular Biology Reports 39:8287−96 doi: 10.1007/s11033-012-1676-y
CrossRef Google Scholar
|
[96]
|
Page JE, Hause G, Raschke M, Gao W, Schmidt J, et al. 2004. Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing. Plant Physiology 134:1401−13 doi: 10.1104/pp.103.038133
CrossRef Google Scholar
|
[97]
|
Bouvier F, Suire C, d'Harlingue A, Backhaus RA, Camara B. 2000. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. The Plant Journal 24:241−52 doi: 10.1046/j.1365-313x.2000.00875.x
CrossRef Google Scholar
|
[98]
|
Hsiao YY, Jeng MF, Tsai WC, Chuang YC, Li CY, et al. 2008. A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD (X)2–4D motif. The Plant Journal 55:719−33 doi: 10.1111/j.1365-313X.2008.03547.x
CrossRef Google Scholar
|
[99]
|
Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E. 2005. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. The Plant Journal 42:757−71 doi: 10.1111/j.1365-313X.2005.02417.x
CrossRef Google Scholar
|
[100]
|
Wang X, Zeng Y, Nieuwenhuizen NJ, Atkinson RG. 2021. TPS-b family genes involved in signature aroma terpenes emission in ripe kiwifruit. Plant Signaling & Behavior 16:1962657 doi: 10.1080/15592324.2021.1962657
CrossRef Google Scholar
|
[101]
|
Abbas F, Guo S, Zhou Y, Wu J, Amanullah S, et al. 2022. Metabolome and transcriptome analysis of terpene synthase genes and their putative role in floral aroma production in Litchi chinensis. Physiologia Plantarum 174:e13796 doi: 10.1111/ppl.13796
CrossRef Google Scholar
|
[102]
|
Mostafa S, Wang Y, Zeng W, Jin B. 2022. Floral scents and fruit aromas: Functions, compositions, biosynthesis, and regulation. Frontiers in Plant Science 13:860157 doi: 10.3389/fpls.2022.860157
CrossRef Google Scholar
|
[103]
|
Yang G, Qin Y, Jia Y, Xie X, Li D, et al. 2023. Transcriptomic and metabolomic data reveal key genes that are involved in the phenylpropanoid pathway and regulate the floral fragrance of Rhododendron fortunei. BMC Plant Biology 23:8 doi: 10.1186/s12870-022-04016-7
CrossRef Google Scholar
|
[104]
|
Shang J, Tian J, Cheng H, Yan Q, Li L, et al. 2020. The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biology 21:200 doi: 10.1186/s13059-019-1906-x
CrossRef Google Scholar
|
[105]
|
Fu J, Huang S, Qian J, Qing H, Wan Z, et al. 2022. Genome-wide identification of petunia HSF genes and potential function of PhHSF19 in benzenoid/phenylpropanoid biosynthesis. International Journal of Molecular Sciences 23:2974 doi: 10.3390/ijms23062974
CrossRef Google Scholar
|
[106]
|
Wang X, Song Z, Ti Y, Ma K, Li Q. 2022. Comparative transcriptome analysis linked to key volatiles reveals molecular mechanisms of aroma compound biosynthesis in Prunus mume. BMC Plant Biology 22:395 doi: 10.1186/s12870-022-03779-3
CrossRef Google Scholar
|
[107]
|
Verdonk JC, De Vos CHR, Verhoeven HA, Haring MA, Van Tunen AJ, et al. 2003. Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 62:997−1008 doi: 10.1016/S0031-9422(02)00707-0
CrossRef Google Scholar
|
[108]
|
Deng Y, Sun X, Gu C, Jia X, Liang L, et al. 2017. Identification of pre-fertilization reproductive barriers and the underlying cytological mechanism in crosses among three petal-types of Jasminum sambac and their relevance to phylogenetic relationships. PLoS ONE 12:e0176026 doi: 10.1371/journal.pone.0176026
CrossRef Google Scholar
|
[109]
|
Rastogi S, Kumar R, Chanotiya CS, Shanker K, Gupta MM, et al. 2013. 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis. Plant and Cell Physiology 54:1238−52 doi: 10.1093/pcp/pct073
CrossRef Google Scholar
|
[110]
|
Wang C, Yu J, Cai Y, Zhu P, Liu C, et al. 2016. Characterization and functional analysis of 4-coumarate: CoA ligase genes in mulberry. PLoS ONE 11:e0155814 doi: 10.1371/journal.pone.0155814
CrossRef Google Scholar
|
[111]
|
Kutty NN, Ghissing U, Mitra A. 2021. Revealing floral metabolite network in tuberose that underpins scent volatiles synthesis, storage and emission. Plant Molecular Biology 106:533−54 doi: 10.1007/s11103-021-01171-7
CrossRef Google Scholar
|
[112]
|
Tong Z, Li H, Zhang R, Ma L, Dong J, et al. 2015. Co-downregulation of the hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase and coumarate 3-hydroxylase significantly increases cellulose content in transgenic alfalfa (Medicago sativa L.). Plant Science 239:230−37 doi: 10.1016/j.plantsci.2015.08.005
CrossRef Google Scholar
|
[113]
|
Zhang T, Bao F, Ding A, Yang Y, Cheng T, et al. 2022. Comprehensive analysis of endogenous volatile compounds, transcriptome, and enzyme activity reveals PmCAD1 involved in cinnamyl alcohol synthesis in Prunus mume. Frontiers in Plant Science 13:820742 doi: 10.3389/fpls.2022.820742
CrossRef Google Scholar
|
[114]
|
Liu Z, Mohsin A, Wang Z, Zhu X, Zhuang Y, et al. 2021. Enhanced biosynthesis of chlorogenic acid and its derivatives in methyl-jasmonate-treated Gardenia jasminoides cells: a study on metabolic and transcriptional responses of cells. Frontiers in Bioengineering and Biotechnology 8:604957 doi: 10.3389/fbioe.2020.604957
CrossRef Google Scholar
|
[115]
|
Wang Z, Du H, Zhai R, Song L, Ma F, Xu L. 2017. Transcriptome analysis reveals candidate genes related to color fading of 'Red Bartlett' (Pyrus communis L.). Frontiers in Plant Science 8:455 doi: 10.3389/fpls.2017.00455
CrossRef Google Scholar
|
[116]
|
Chuang YC, Hung YC, Tsai WC, Chen WH, Chen HH. 2018. PbbHLH4 regulates floral monoterpene biosynthesis in Phalaenopsis orchids. Journal of Experimental Botany 69:4363−77 doi: 10.1093/jxb/ery246
CrossRef Google Scholar
|
[117]
|
Ding W, Ouyang Q, Li Y, Shi T, Li L, et al. 2020. Genome-wide investigation of WRKY transcription factors in sweet osmanthus and their potential regulation of aroma synthesis. Tree Physiology 40:557−72 doi: 10.1093/treephys/tpz129
CrossRef Google Scholar
|
[118]
|
Yu Y, Liu Z, Wang L, Kim SG, Seo PJ, et al. 2016. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana. The Plant Journal 85:96−106 doi: 10.1111/tpj.13092
CrossRef Google Scholar
|
[119]
|
Lei R, Li X, Ma Z, Lv Y, Hu Y, et al. 2017. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function. The Plant Journal 91:962−76 doi: 10.1111/tpj.13619
CrossRef Google Scholar
|
[120]
|
Zhang Y, Cao G, Qu L, Gu H. 2009. Characterization of Arabidopsis MYB transcription factor gene AtMYB17 and its possible regulation by LEAFY and AGL15. Journal of Genetics and Genomics 36:99−107 doi: 10.1016/S1673-8527(08)60096-X
CrossRef Google Scholar
|
[121]
|
Xu Y, Zhu C, Xu C, Sun J, Grierson D, et al. 2019. Integration of metabolite profiling and transcriptome analysis reveals genes related to volatile terpenoid metabolism in finger citron (C. medica var. sarcodactylis). Molecules 24:2564 doi: 10.3390/molecules24142564
CrossRef Google Scholar
|
[122]
|
Hong G, Xue X, Mao Y, Wang L, Chen X. 2012. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. The Plant Cell 24:2635−48 doi: 10.1105/tpc.112.098749
CrossRef Google Scholar
|
[123]
|
Muhlemann JK, Klempien A, Dudareva N. 2014. Floral volatiles: from biosynthesis to function. Plant, Cell & Environment 37:1936−49 doi: 10.1111/pce.12314
CrossRef Google Scholar
|
[124]
|
Ben Zvi MM, Negre-Zakharov F, Masci T, Ovadis M, Shklarman E, et al. 2008. Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers. Plant Biotechnology Journal 6:403−15 doi: 10.1111/j.1467-7652.2008.00329.x
CrossRef Google Scholar
|