[1]
|
Nichols RA, Beaumont MA. 1996. Is it ancient or modern history that we can read in the genes? In Aspects of the Genesis and Maintenance of Biological Diversity, eds. Hochberg ME, Clobert J, Barbault R, xi, 316 pp. Oxford: Oxford University Press. pp. 69–87.
|
[2]
|
Hewitt GM, Butlin RK. 1997. Causes and consequences of population structure. In Behavioral Ecology: An Introductory Approach, 4th Edition, eds. Krebs JR, Daies NB, 480 pp. Oxford: Oxford University Press. pp. 350–72.
|
[3]
|
Hewitt G. 2000. The genetic legacy of the Quaternary ice ages. Nature 405:907−13 doi: 10.1038/35016000
CrossRef Google Scholar
|
[4]
|
Qian H, Ricklefs RE. 2001. Diversity of temperate plants in east Asia. Nature 413:130 doi: 10.1038/35093169
CrossRef Google Scholar
|
[5]
|
Hewitt GM. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B: Biological Sciences 359:183−95 doi: 10.1098/rstb.2003.1388
CrossRef Google Scholar
|
[6]
|
Bai W, Liao W, Zhang D. 2010. Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. New Phytologist 188:892−901 doi: 10.1111/j.1469-8137.2010.03407.x
CrossRef Google Scholar
|
[7]
|
Zeng Y, Wang W, Liao W, Wang H, Zhang D. 2015. Multiple glacial refugia for cool-temperate deciduous trees in northern East Asia: the Mongolian oak as a case study. Molecular Ecology 24:5676−91 doi: 10.1111/mec.13408
CrossRef Google Scholar
|
[8]
|
Davis MB. 1983. Quaternary history of deciduous forests of eastern North America and Europe. Annals of the Missouri Botanical Garden 70:550−63 doi: 10.2307/2992086
CrossRef Google Scholar
|
[9]
|
Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS. 2006. Comparative phylogeography of unglaciated eastern North America. Molecular Ecology 15:4261−93 doi: 10.1111/j.1365-294X.2006.03061.x
CrossRef Google Scholar
|
[10]
|
Chen K, Abbott RJ, Milne RI, Tian X, Liu J. 2008. Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China. Molecular Ecology 17:4276−88 doi: 10.1111/j.1365-294X.2008.03911.x
CrossRef Google Scholar
|
[11]
|
Du F, Petit RJ, Liu J. 2009. More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other Conifers. Molecular Ecology 18:1396−407 doi: 10.1111/j.1365-294X.2009.04107.x
CrossRef Google Scholar
|
[12]
|
Tian B, Liu R, Wang L, Qiu Q, Chen K, et al. 2009. Phylogeographic analyses suggest that a deciduous species (Ostryopsis davidiana Decne., Betulaceae) survived in northern China during the Last Glacial Maximum. Journal of Biogeography 36:2148−55 doi: 10.1111/j.1365-2699.2009.02157.x
CrossRef Google Scholar
|
[13]
|
Anderson LL, Hu FS, Nelson DM, Petit RJ, Paige KN. 2006. Ice-age endurance: DNA evidence of a white spruce refugium in Alaska. Proceedings of the National Academy of Sciences of the United States of America 103:12447−50 doi: 10.1073/pnas.0605310103
CrossRef Google Scholar
|
[14]
|
Stewart JR, Lister AM, Barnes I, Dalén L. 2010. Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society B: Biological Sciences 277:661−71 doi: 10.1098/rspb.2009.1272
CrossRef Google Scholar
|
[15]
|
Qiu Y, Fu C, Comes HP. 2011. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora. Molecular Phylogenetics and Evolution 59:225−44 doi: 10.1016/j.ympev.2011.01.012
CrossRef Google Scholar
|
[16]
|
Parducci L, Jørgensen T, Tollefsrud MM, Elverland E, Alm T, et al. 2012. Glacial survival of boreal trees in northern Scandinavia. Science 335:1083−86 doi: 10.1126/science.1216043
CrossRef Google Scholar
|
[17]
|
Kling M, Ackerly D. 2021. Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees. Proceedings of the National Academy of Sciences of the United States of America 118:e2017317118 doi: 10.1073/pnas.2017317118
CrossRef Google Scholar
|
[18]
|
Papadopoulou A, Knowles LL. 2015. Species-specific responses to island connectivity cycles: refined models for testing phylogeographic concordance across a Mediterranean Pleistocene Aggregate Island Complex. Molecular Ecology 24:4252−68 doi: 10.1111/mec.13305
CrossRef Google Scholar
|
[19]
|
Song X, Milne RI, Fan X, Xie S, Zhang L, et al. 2021. Blow to the Northeast? Intraspecific differentiation of Populus davidiana suggests a north-eastward skew of a phylogeographic break in East Asia Journal of Biogeography 48:187−201 doi: 10.1111/jbi.13992
CrossRef Google Scholar
|
[20]
|
Mandák B, Havrdová A, Krak K, Hadincová V, Vít P, et al. 2016. Recent similarity in distribution ranges does not mean a similar postglacial history: a phylogeographical study of the boreal tree species Alnus incana based on microsatellite and chloroplast DNA variation. New Phytologist 210:1395−407 doi: 10.1111/nph.13848
CrossRef Google Scholar
|
[21]
|
Liu J, Sun Y, Ge X, Gao L, Qiu Y. 2012. Phylogeographic studies of plants in China: advances in the past and directions in the future. Journal of Systematics and Evolution 50:267−75 doi: 10.1111/j.1759-6831.2012.00214.x
CrossRef Google Scholar
|
[22]
|
Ye J, Bai W, Bao L, Wang T, Wang H, et al. 2017. Sharp genetic discontinuity in the aridity-sensitive Lindera obtusiloba (Lauraceae): solid evidence supporting the Tertiary floral subdivision in East Asia. Journal of Biogeography 44:2082−95 doi: 10.1111/jbi.13020
CrossRef Google Scholar
|
[23]
|
Wang S, Bao L, Wang T, Wang H, Ge J. 2016. Contrasting genetic patterns between two coexisting Eleutherococcus species in northern China. Ecology and Evolution 6:3311−24 doi: 10.1002/ece3.2118
CrossRef Google Scholar
|
[24]
|
Liu Y, Xing M, Zhao W, Fan R, Luo S, et al. 2012. Genetic diversity analysis of Rhododendron aureum Georgi (Ericaceae) located on Changbai Mountain using ISSR and RAPD markers. Plant Systematics and Evolution 298:921−30 doi: 10.1007/s00606-012-0601-0
CrossRef Google Scholar
|
[25]
|
Chung MY, López-Pujol J, Chung MG. 2017. The role of the Baekudaegan (Korean Peninsula) as a major glacial refugium for plant species: a priority for conservation. Biological Conservation 206:236−48 doi: 10.1016/j.biocon.2016.11.040
CrossRef Google Scholar
|
[26]
|
Chung MY, Son SW, Suh GU, Herrando-Moraira S, Lee CH, et al. 2018. The Korean Baekdudaegan Mountains: a glacial refugium and a biodiversity hotspot that needs to be conserved. Frontiers in Genetics 9:489 doi: 10.3389/fgene.2018.00489
CrossRef Google Scholar
|
[27]
|
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11−15
Google Scholar
|
[28]
|
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25:4876−82 doi: 10.1093/nar/25.24.4876
CrossRef Google Scholar
|
[29]
|
Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16:1099−106 doi: 10.1111/j.1365-294X.2007.03089.x
CrossRef Google Scholar
|
[30]
|
Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537−39 doi: 10.1093/bioinformatics/bts460
CrossRef Google Scholar
|
[31]
|
Whitlock MC, McCauley DE. 1999. Indirect measures of gene flow and migration: FST≠1/(4Nm+1). Heredity 82:117−25 doi: 10.1038/sj.hdy.6884960
CrossRef Google Scholar
|
[32]
|
Kalinowski ST. 2005. HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes 5:187−89 doi: 10.1111/j.1471-8286.2004.00845.x
CrossRef Google Scholar
|
[33]
|
Dray S, Dufour AB. 2007. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22:1−20 doi: 10.18637/jss.v022.i04
CrossRef Google Scholar
|
[34]
|
Mantel N, Valand RS. 1970. A technique of nonparametric multivariate analysis. Biometrics 26:547−58 doi: 10.2307/2529108
CrossRef Google Scholar
|
[35]
|
Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945−59 doi: 10.1093/genetics/155.2.945
CrossRef Google Scholar
|
[36]
|
Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14:2611−20 doi: 10.1111/j.1365-294X.2005.02553.x
CrossRef Google Scholar
|
[37]
|
Earl DA, vonHoldt BM. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4:359−61 doi: 10.1007/s12686-011-9548-7
CrossRef Google Scholar
|
[38]
|
Jombart T. 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403−05 doi: 10.1093/bioinformatics/btn129
CrossRef Google Scholar
|
[39]
|
Jombart T, Ahmed I. 2011. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070−71 doi: 10.1093/bioinformatics/btr521
CrossRef Google Scholar
|
[40]
|
Nei M. 1972. Genetic distance between populations. The American Naturalist 106:283−92 doi: 10.1086/282771
CrossRef Google Scholar
|
[41]
|
Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10:564−67 doi: 10.1111/j.1755-0998.2010.02847.x
CrossRef Google Scholar
|
[42]
|
Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870−74 doi: 10.1093/molbev/msw054
CrossRef Google Scholar
|
[43]
|
Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131:479−91 doi: 10.1093/genetics/131.2.479
CrossRef Google Scholar
|
[44]
|
Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496−97 doi: 10.1093/bioinformatics/btg359
CrossRef Google Scholar
|
[45]
|
Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451−52 doi: 10.1093/bioinformatics/btp187
CrossRef Google Scholar
|
[46]
|
Bandelt HJ, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16:37−48 doi: 10.1093/oxfordjournals.molbev.a026036
CrossRef Google Scholar
|
[47]
|
Pons O, Petit RJ. 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237−45 doi: 10.1093/genetics/144.3.1237
CrossRef Google Scholar
|
[48]
|
Cornuet JM, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, et al. 2014. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30:1187−89 doi: 10.1093/bioinformatics/btt763
CrossRef Google Scholar
|
[49]
|
Beaumont MA. 2010. Approximate Bayesian computation in evolution and ecology. Annual Review of Ecology, Evolution, and Systematics 41:379−406 doi: 10.1146/annurev-ecolsys-102209-144621
CrossRef Google Scholar
|
[50]
|
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585−95 doi: 10.1093/genetics/123.3.585
CrossRef Google Scholar
|
[51]
|
Fu YX, Li WH. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:693−709 doi: 10.1093/genetics/133.3.693
CrossRef Google Scholar
|
[52]
|
Excoffier L. 2004. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Molecular Ecology 13:853−64 doi: 10.1046/j.1365-294X.2003.02004.x
CrossRef Google Scholar
|
[53]
|
Phillips SJ, Dudík M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161−75 doi: 10.1111/j.0906-7590.2008.5203.x
CrossRef Google Scholar
|
[54]
|
Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science 240:1285−93 doi: 10.1126/science.3287615
CrossRef Google Scholar
|
[55]
|
Dakin EE, Avise JC. 2004. Microsatellite null alleles in parentage analysis. Heredity 93:504−9 doi: 10.1038/sj.hdy.6800545
CrossRef Google Scholar
|
[56]
|
Nybom H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13:1143−55 doi: 10.1111/j.1365-294X.2004.02141.x
CrossRef Google Scholar
|
[57]
|
Hamrick JL, Godt MJW. 1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society B: Biological Sciences 351:1291−98 doi: 10.1098/rstb.1996.0112
CrossRef Google Scholar
|
[58]
|
Chung MY, Son SW, Herrando-Moraira S, Tang CQ, Maki M, et al. 2020. Incorporating differences between genetic diversity of trees and herbaceous plants in conservation strategies. Conservation Biology 34:1142−51 doi: 10.1111/cobi.13467
CrossRef Google Scholar
|
[59]
|
Petit RJ, Bodénès C, Ducousso A, Roussel G, Kremer A. 2004. Hybridization as a mechanism of invasion in oaks. New Phytologist 161:151−64 doi: 10.1046/j.1469-8137.2003.00944.x
CrossRef Google Scholar
|
[60]
|
Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, et al. 2005. INVITED REVIEW: comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology 14:689−701 doi: 10.1111/j.1365-294X.2004.02410.x
CrossRef Google Scholar
|
[61]
|
Chen C, Lu R, Zhu S, Tamaki I, Qiu Y. 2017. Population structure and historical demography of Dipteronia dyeriana (Sapindaceae), an extremely narrow palaeoendemic plant from China: implications for conservation in a biodiversity hot spot. Heredity 119:95−106 doi: 10.1038/hdy.2017.19
CrossRef Google Scholar
|
[62]
|
Li X, Ruhsam M, Wang Y, Zhang H, Fan X, et al. 2023. Wind-dispersed seeds blur phylogeographic breaks: the complex evolutionary history of Populus lasiocarpa around the Sichuan Basin. Plant Diversity 45:156−68 doi: 10.1016/j.pld.2022.10.003
CrossRef Google Scholar
|
[63]
|
Rusanen M, Vakkari P, Blom A. 2003. Genetic structure of Acer platanoides and Betula pendula in northern Europe. Canadian Journal of Forest Research 33:1110−15 doi: 10.1139/x03-025
CrossRef Google Scholar
|
[64]
|
Lind JF, Gailing O. 2013. Genetic structure of Quercus rubra L. and Quercus ellipsoidalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers. Tree Genetics & Genomes 9:707−22 doi: 10.1007/s11295-012-0586-4
CrossRef Google Scholar
|
[65]
|
Wright S. 1978. Evolution and the genetics of populations. A treatise in four volumes. Volume 4. Variability within and among natural populations.. Chicago: University of Chicago Press. 580 pp.
|
[66]
|
Ellegren H, Galtier N. 2016. Determinants of genetic diversity. Nature Reviews Genetics 17:422−33 doi: 10.1038/nrg.2016.58
CrossRef Google Scholar
|
[67]
|
Avise JC. 2004. Molecular markers, natural history and evolution. Sunderland: Sinauer Associates, Inc. xiv, 511 pp. https://doi.org/10.1007/978-1-4615-2381-9
|
[68]
|
Petit RJ, Excoffier L. 2009. Gene flow and species delimitation. Trends in Ecology & Evolution 24:386−93 doi: 10.1016/j.tree.2009.02.011
CrossRef Google Scholar
|
[69]
|
Löve Á, Löve D, Íslands H, Náttúrugripasafnid R. 1963. North Atlantic Biota and Their History. Oxford: Pergamon Press. https://doi.org/10.5962/bhl.title.10237
|
[70]
|
Blytt A. 1876. Essay on the immigration of the Norwegian Flora during alternating rainy and dry periods. Västernorrland: Murberget Länsmuseet Västernorrland. https://www.europeana.eu/en/item/2032001/SE_MURBERGET_OBJECT_BK_B375
|
[71]
|
Blytt A. 1881. Die Theorie der wechselnden kontinentalen und insularen Klimate. Englers Botanische Jahrbücher 2:1−50
Google Scholar
|
[72]
|
Warming E. 1888. Om Grønlands vegetation. Meddelelser Om Grønland 12. Kjøbenhavn: I commission hos C. A. Reitzel. pp. 1–245. https://searchworks.stanford.edu/view/2230765
|
[73]
|
Sernander R. 1896. Några ord med anledning af Gunnar Andersson, Svenska Växtvärldens historia. Botaniska Notiser114−28
Google Scholar
|
[74]
|
Provan J, Bennett KD. 2008. Phylogeographic insights into cryptic glacial refugia. Trends in Ecology and Evolution 23:564−71 doi: 10.1016/j.tree.2008.06.010
CrossRef Google Scholar
|
[75]
|
Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, et al. 2008. Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89:S108−S122 doi: 10.1890/08-0257.1
CrossRef Google Scholar
|
[76]
|
Lee JH, Lee DH, Choi IS, Choi BH. 2014. Genetic diversity and historical migration patterns of an endemic evergreen oak, Quercus acuta, across Korea and Japan, inferred from nuclear microsatellites. Plant Systematics and Evolution 300:1913−23 doi: 10.1007/s00606-014-1017-9
CrossRef Google Scholar
|
[77]
|
Bao L, Kudureti A, Bai W, Chen R, Wang T, et al. 2015. Contributions of multiple refugia during the last glacial period to current mainland populations of Korean pine (Pinus koraiensis). Scientific Reports 5:18608 doi: 10.1038/srep18608
CrossRef Google Scholar
|
[78]
|
Bai W, Wang W, Zhang D. 2016. Phylogeographic breaks within Asian butternuts indicate the existence of a phytogeographic divide in East Asia. New Phytologist 209:1757−72 doi: 10.1111/nph.13711
CrossRef Google Scholar
|
[79]
|
Xu H, Cao M, Wu Y, Cai L, Cao Y, et al. 2016. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales. Scientific Reports 6:21988 doi: 10.1038/srep21988
CrossRef Google Scholar
|
[80]
|
Zhang M, Slik JWF, Ma K. 2016. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China. Scientific Reports 6:22400 doi: 10.1038/srep22400
CrossRef Google Scholar
|
[81]
|
Sang Y, Long Z, Dan X, Feng J, Shi T, et al. 2022. Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia. Nature Communications 13:6541 doi: 10.1038/s41467-022-34206-8
CrossRef Google Scholar
|
[82]
|
Borthakur D, Busov V, Cao X, Du Q, Gailing O, et al. 2022. Current status and trends in forest genomics. Forestry Research 2:11 doi: 10.48130/FR-2022-0011
CrossRef Google Scholar
|
[83]
|
Fang Z, Zhao S, Skvortsov AK. 1999. Populus. In Flora of China, eds. Wu Z, Raven PH. Vol. 4: 145 pp. Beijing: Missouri Botanical Garden. pp. 1–25. http://flora.huh.harvard.edu/china/mss/volume04/SALICACEAE.published.pdf
|
[84]
|
Wang Y, Huang J, Li E, Xu S, Zhan Z et al. 2022. Phylogenomics and biogeography of Populus based on comprehensive sampling reveal deep-level relationships and multiple intercontinental dispersals. Frontiers in Plant Science 13:813177 doi: 10.3389/fpls.2022.813177
CrossRef Google Scholar
|
[85]
|
Plant of the World Online (POWO). 1922. Populus koreana Rehder. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:776742-1. (Accessed 18 Jul. 2023).
|
[86]
|
Zheng H, Fan L, Milne RI, Zhang L, Wang Y, et al. 2017. Species delimitation and lineage separation history of a species complex of aspens in China. Frontiers in Plant Science 8:375 doi: 10.3389/fpls.2017.00375
CrossRef Google Scholar
|