[1]

Bordoni A, Hrelia S, Angeloni C, Leoncini E, Giordano E, et al. 2002. Protection of hypoxia/reoxygenation injury by green tea supplementation in cultured cardiac cells. Free Radical Research 36:75−76

[2]

Song DU, Do Jung Y, Chay KO, Chung MA, Lee KH, et al. 2002. Effect of drinking green tea on age-associated accumulation of maillard-type fluorescence and carbonyl groups in rat aortic and skin collagen. Archives of Biochemistry and Biophysics 397:424−29

doi: 10.1006/abbi.2001.2695
[3]

Wang Y, Hao X, Lu Q, Wang L, Qian W, et al. 2018. Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant (Camellia sinensis (L.) O. Kuntze) to anthracnose. Horticulture Research 5:18

doi: 10.1038/s41438-018-0025-2
[4]

Wang XC, Zhao QY, Ma CL, Zhang ZH, Cao HL, et al. 2013. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14:415

doi: 10.1186/1471-2164-14-415
[5]

Wu ZJ, Li XH, Liu ZW, Li H, Wang YX, et al. 2015. Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis). Functional & Integrative Genomics 15:741−52

doi: 10.1007/s10142-015-0457-9
[6]

Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD. 1997. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 94:7076−81

doi: 10.1073/pnas.94.13.7076
[7]

Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, et al. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications 290:998−1009

doi: 10.1006/bbrc.2001.6299
[8]

Woo HR, Kim JH, Kim J, Kim J, Lee U, et al. 2010. The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. Journal of Experimental Botany 61:3947−57

doi: 10.1093/jxb/erq206
[9]

Leivar P, Quail PH. 2011. PIFs: pivotal components in a cellular signaling hub. Trends in Plant Science 16:19−28

doi: 10.1016/j.tplants.2010.08.003
[10]

Hu YX, Wang YH, Liu XF, Li JY. 2004. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Research 14:8−15

doi: 10.1038/sj.cr.7290197
[11]

Je BI, Piao HL, Park SJ, Park SH, Kim CM, et al. 2010. RAV-Like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice. The Plant Cell 22:1777−91

doi: 10.1105/tpc.109.069575
[12]

Luo YX, Chen SK, Wang PD, Peng D, Zhang X, et al. 2022. Genome-wide analysis of the RAV gene family in wheat and functional identification of TaRAV1 in salt stress. International Journal of Molecular Sciences 23:8834

doi: 10.3390/ijms23168834
[13]

Zhao SP, Xu ZS, Zheng WJ, Zhao W, Wang YX, et al. 2017. Genome-wide analysis of the RAV family in soybean and functional identification of GmRAV-03 involvement in salt and drought stresses and exogenous ABA treatment. Frontiers in Plant Science 8:905

doi: 10.3389/fpls.2017.00905
[14]

Liu J, Deng Z, Liang C, Sun H, Li D, et al. 2021. Genome-wide analysis of RAV transcription factors and functional characterization of anthocyanin-biosynthesis-related RAV genes in pear. International Journal of Molecular Sciences 22:5567

doi: 10.3390/ijms22115567
[15]

Chen C, Li Y, Zhang H, Ma Q, Wei Z, et al. 2021. Genome-wide analysis of the RAV transcription factor genes in rice reveals their response patterns to hormones and virus infection. Viruses 13:752

doi: 10.3390/v13050752
[16]

Song X, Li Y, Hou X. 2013. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 14:573

doi: 10.1186/1471-2164-14-573
[17]

Feng CZ, Chen Y, Wang C, Kong YH, Wu WH, et al. 2014. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. The Plant Journal 80:654−68

doi: 10.1111/tpj.12670
[18]

Zhang K, Zhao L, Yang X, Li M, Sun J, et al. 2019. GmRAV1 regulates regeneration of roots and adventitious buds by the cytokinin signaling pathway in Arabidopsis and soybean. Physiologia Plantarum 165:814−29

doi: 10.1111/ppl.12788
[19]

Gao Y, Han D, Jia W, Ma X, Yang Y, et al. 2020. Molecular characterization and systematic analysis of NtAP2/ERF in tobacco and functional determination of NtRAV-4 under drought stress. Plant Physiology and Biochemistry 156:420−35

doi: 10.1016/j.plaphy.2020.09.027
[20]

Zhao L, Zhang F, Liu B, Yang S, Xiong X, et al. 2019. CmRAV1 shows differential expression in two melon (Cucumis melo L.) cultivars and enhances salt tolerance in transgenic Arabidopsis plants. Acta Biochimica et Biophysica Sinica 51:1123−33

doi: 10.1093/abbs/gmz107
[21]

Li XJ, Li M, Zhou Y, Hu S, Hu R, et al. 2015. Overexpression of cotton RAV1 gene in Arabidopsis confers transgenic plants high salinity and drought sensitivity. PLoS One 10:e0118056

doi: 10.1371/journal.pone.0118056
[22]

Kim SY, Kim YC, Lee JH, Oh SK, Chung E, et al. 2005. Identification of a CaRAV1 possessing an AP2/ERF and B3 DNA-binding domain from pepper leaves infected with Xanthomonas axonopodis pv. glycines 8ra by differential display. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1729:141−46

doi: 10.1016/j.bbaexp.2005.04.009
[23]

Zhang T, Li P, Kou M, Wang J, Zheng S. 2016. Cloning and expression analysis of transcription factor RAV from Brasserie campestris. Journal of Northwest Normal University(Natural Science) 52:85−91+102

doi: 10.16783/j.cnki.nwnuz.2016.06.016
[24]

Chen X, Wang Z, Wang X, Dong J, Ren J, et al. 2009. Isolation and characterization of GoRAV, a novel gene encoding a RAV-type protein in Galegae orientalis. Genes & Genetic Systems 84:101−9

doi: 10.1266/ggs.84.101
[25]

Meng X, Han J, Wang Q, Tian S. 2009. Changes in physiology and quality of peach fruits treated by methyl jasmonate under low temperature stress. Food Chemistry 114:1028−35

doi: 10.1016/j.foodchem.2008.09.109
[26]

Cavusoglu S, Yilmaz N, Islek F, Tekin O. 2021. Effect of methyl jasmonate treatments on fruit quality and antioxidant enzyme activities of sour cherry (Prunus cerasus L.) during cold storage. Journal of Agricultural Sciences-Tarim Bilimleri Dergisi 27:460−68

doi: 10.15832/ankutbd.702758
[27]

Qi F, Li J, Duan L, Li Z. 2006. Inductions of coronatine and MeJA to low-temperature resistance of wheat seedlings. Acta Botanica Boreali-Occidentalia Sinica 26(9):1776−80

[28]

Shahzad R, Waqas M, Khan AL, Hamayun M, Kang SM, et al. 2015. Foliar application of methyl jasmonate induced physio-hormonal changes in Pisum sativum under diverse temperature regimes. Plant Physiology and Biochemistry 96:406−16

doi: 10.1016/j.plaphy.2015.08.020
[29]

Chen WJ, Wang X, Yan S, Huang X, Yuan HM. 2019. The ICE-like transcription factor HbICE2 is involved in jasmonate-regulated cold tolerance in the rubber tree (Hevea brasiliensis). Plant Cell Reports 38:699−714

doi: 10.1007/s00299-019-02398-x
[30]

Hu Y, Jiang Y, Han X, Wang H, Pan J, et al. 2017. Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. Journal of Experimental Botany 68:1361−69

doi: 10.1093/jxb/erx004
[31]

Zhou Y, Zeng L, Hou X, Liao Y, Yang Z. 2020. Low temperature synergistically promotes wounding-induced indole accumulation by inducer of cbf expression-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany 71:2172−85

doi: 10.1093/jxb/erz570
[32]

Shi J, Wang L, Ma CY, Lv HP, Chen ZM, et al. 2014. Aroma changes of black tea prepared from methyl jasmonate treated tea plants. Journal of Zhejiang University SCIENCE B 15:313−21

doi: 10.1631/jzus.B1300238
[33]

Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America 115:E4151−E4158

doi: 10.1073/pnas.1719622115
[34]

Xia EH, Li FD, Tong W, Li PH, Wu Q, et al. 2019. Tea Plant Information Archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnology Journal 17:1938−53

doi: 10.1111/pbi.13111
[35]

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10:845−58

doi: 10.1038/nprot.2015.053
[36]

Shen J, Zou Z, Xing H, Duan Y, Zhu X, et al. 2020. Genome-wide analysis reveals stress and hormone responsive patterns of JAZ family genes in Camellia sinensis. International Journal of Molecular Sciences 21:2433

doi: 10.3390/ijms21072433
[37]

Wang H, Zhong L, Fu X, Huang S, Fu H, et al. 2022. Physiological and transcriptomic analyses reveal the mechanisms of compensatory growth ability for early rice after low temperature and weak light stress. Plants 11:2523

doi: 10.3390/plants11192523
[38]

Ye YJ, Xiao YY, Han YC, Shan W, Fan ZQ, et al. 2016. Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes. Scientific Reports 6:23632

doi: 10.1038/srep23632
[39]

Zhao ML, Wang JN, Shan W, Fan JG, Kuang JF, et al. 2013. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant, Cell & Environment 36:30−51

doi: 10.1111/j.1365-3040.2012.02551.x
[40]

Wang M, Zou Z, Li Q, Xin H, Zhu X, et al. 2017. Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana. Plant Cell Reports 36:1125−35

doi: 10.1007/s00299-017-2143-y
[41]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[42]

Zhuang J, Sun CC, Zhou XR, Xiong AS, Zhang J. 2011. Isolation and characterization of an AP2/ERF-RAV transcription factor BnaRAV-1-HY15 in Brassica napus L. HuYou15. Molecular Biology Reports 38:3921−28

doi: 10.1007/s11033-010-0508-1
[43]

Fu M, Kang HK, Son SH, Kim SK, Nam KH. 2014. A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA. Plant and Cell Physiology 55:1892−904

doi: 10.1093/pcp/pcu118
[44]

Kabir N, Lin H, Kong X, Liu L, Qanmber G, et al. 2021. Identification, evolutionary analysis and functional diversification of RAV gene family in cotton (G. hirsutum L.). Planta 255:14

doi: 10.1007/s00425-021-03782-2
[45]

Kagaya Y, Hattori T. 2009. Arabidopsis transcription factors, RAV1 and RAV2, are regulated by touch-related stimuli in a dose-dependent and biphasic manner. Genes & Genetic Systems 84:95−99

doi: 10.1266/ggs.84.95
[46]

Rose AB. 2008. Intron-mediated regulation of gene expression. In Nuclear pre-mRNA Processing in Plants, eds. Reddy ASN, Golovkin M. vol 326. Berlin, Heidelberg: Springer. pp. 277−90. https://doi.org/10.1007/978-3-540-76776-3_15

[47]

Song S, Qi T, Huang H, Ren Q, Wu D, et al. 2011. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. The Plant Cell 23:1000−13

doi: 10.1105/tpc.111.083089
[48]

Zhai Q, Yan L, Tan D, Chen R, Sun J, et al. 2013. Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genetics 9:e1003422

doi: 10.1371/journal.pgen.1003422
[49]

Chatel G, Montiel G, Pré M, Memelink J, Thiersault M, et al. 2003. CrMYC1, a Catharanthus roseus elicitor- and jasmonate-responsive bHLH transcription factor that binds the G-box element of the strictosidine synthase gene promoter. Journal of Experimental Botany 54:2587−88

doi: 10.1093/jxb/erg275
[50]

Maestrini P, Cavallini A, Rizzo M, Giordani T, Bernardi R, et al. 2009. Isolation and expression analysis of low temperature-induced genes in white poplar (Populus alba). Journal of Plant Physiology 166:1544−56

doi: 10.1016/j.jplph.2009.03.014
[51]

Liu J, Shen Y, Cao H, He K, Chu Z, et al. 2022. OsbHLH057 targets the AATCA cis-element to regulate disease resistance and drought tolerance in rice. Plant Cell Reports 41:1285−99

doi: 10.1007/s00299-022-02859-w