[1]

Navaud O, Dabos P, Carnus E, Tremousaygue D, Hervé C. 2007. TCP transcription factors predate the emergence of land plants. Journal of Molecular Evolution 65:23−33

doi: 10.1007/s00239-006-0174-z
[2]

Li Z, Li B, Shen WH, Huang H, Dong A. 2012. TCP transcription factors interact with AS2 in the repression of class-I KNOX genes in Arabidopsis thaliana. The Plant Journal 71:99−107

doi: 10.1111/j.1365-313X.2012.04973.x
[3]

Tu Z, Xia H, Yang L, Zhai X, Shen Y, et al. 2022. The roles of microRNA-long non-coding RNA-mRNA networks in the regulation of leaf and flower development in Liriodendron chinense. Frontiers in Plant Science 13:816875

doi: 10.3389/fpls.2022.816875
[4]

Davière JM, Wild M, Regnault T, Baumberger N, Eisler H, et al. 2014. Class I TCP-DELLA Interactions in Inflorescence Shoot Apex Determine Plant Height. Current Biology 24:1923−28

doi: 10.1016/j.cub.2014.07.012
[5]

Aguilar-Martínez JA, Sinha N. 2013. Analysis of the role of Arabidopsis class I TCP genes At TCP7, At TCP8, At TCP22, and At TCP23 in leaf development. Frontiers in Plant Science 4:406

doi: 10.3389/fpls.2013.00406
[6]

Martín-Trillo M, Cubas P. 2010. TCP genes: a family snapshot ten years later. Trends in Plant Science 15:31−39

doi: 10.1016/j.tplants.2009.11.003
[7]

Ferrero LV, Gastaldi V, Ariel FD, Viola IL, Gonzalez DH. 2021. Class I TCP proteins TCP14 and TCP15 are required for elongation and gene expression responses to auxin. Plant Molecular Biology 105:147−59

doi: 10.1007/s11103-020-01075-y
[8]

Li C, Potuschak T, Colón-Carmona A, Gutiérrez RA, Doerner P. 2005. Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proceedings of the National Academy of Sciences of the United States of America 102:12978−83

doi: 10.1073/pnas.0504039102
[9]

Li X, Zhang G, Liang Y, Hu L, Zhu B, et al. 2021. TCP7 interacts with Nuclear Factor-Ys to promote flowering by directly regulating SOC1 in Arabidopsis. The Plant JournaL 108:1493−506

doi: 10.1111/tpj.15524
[10]

Baulies JL, Bresso EG, Goldy C, Palatnik JF, Schommer C. 2022. Potent inhibition of TCP transcription factors by miR319 ensures proper root growth in Arabidopsis. Plant Molecular Biology 108:93−103

doi: 10.1007/s11103-021-01227-8
[11]

Wang H, Mao Y, Yang J, He Y. 2015. TCP24 modulates secondary cell wall thickening and anther endothecium development. Frontiers in Plant Science 6:436

doi: 10.3389/fpls.2015.00436
[12]

Yamaguchi M, Kubo M, Fukuda H, Demura T. 2008. VASCULAR-RELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. The Plant Journal 55:652−64

doi: 10.1111/j.1365-313X.2008.03533.x
[13]

Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E. 2008. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana. The Plant Journal 53:42−52

doi: 10.1111/j.1365-313X.2007.03308.x
[14]

Alvarez JP, Furumizu C, Efroni I, Eshed Y, Bowman JL. 2016. Active suppression of a leaf meristem orchestrates determinate leaf growth. eLife 5:e15023

doi: 10.7554/eLife.15023
[15]

Yu H, Zhang L, Wang W, Tian P, Wang W, et al. 2021. TCP5 controls leaf margin development by regulating KNOX and BEL-like transcription factors in Arabidopsis. Journal of Experimental Botany 72:1809−21

doi: 10.1093/jxb/eraa569
[16]

Xu Y, Liu H, Gao Y, Xiong R, Wu M, et al. 2021. The TCP transcription factor PeTCP10 modulates salt tolerance in transgenic Arabidopsis. Plant Cell Reports 40:1971−87

doi: 10.1007/s00299-021-02765-7
[17]

Mukhopadhyay P, Tyagi AK. 2015. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Scientific Reports 5:9998

doi: 10.1038/srep09998
[18]

Li H, Yuan H, Liu F, Luan J, Yang Y, et al. 2020. BpTCP7 gene from Betula platyphylla regulates tolerance to salt and drought stress through multiple hormone pathways. Plant Cell Tissue and Organ Culture 141:17−30

doi: 10.1007/s11240-019-01748-7
[19]

Ding S, Cai Z, Du H, Wang H. 2019. Genome-wide analysis of TCP family genes in Zea mays L. identified a role for ZmTCP42 in drought tolerance. International Journal of Molecular Sciences 20:2762

doi: 10.3390/ijms20112762
[20]

Fu X, Zhao J, Cao D, He C, Wang Z, et al. 2023. Characteristics and expression of the TCP transcription factors family in Allium senescens reveal its potential roles in drought stress responses. BIOCELL 47:905−17

doi: 10.32604/biocell.2023.026930
[21]

Wang Y, Yu Y, Wan H, Ni Z. 2023. Sea-island cotton (Gossypium barbadense L.) GbTCP5 improves plant adaptation to drought and salt stress by directly activating GbERD7, GbUBC19, and GbGOLS2expression. Industrial Crops and Products 203:117209

doi: 10.1016/j.indcrop.2023.117209
[22]

Jiao P, Liu T, Zhao C, Fei J, Guan S, Ma Y. 2023. ZmTCP14, a TCP transcription factor, modulates drought stress response in Zea mays L. Environmental and Experimental Botany 208:105232

doi: 10.1016/j.envexpbot.2023.105232
[23]

Liu YJ, An JP, Gao N, Wang X, Chen XX, et al. 2022. MdTCP46 interacts with MdABI5 to negatively regulate ABA signalling and drought response in apple. Plant Cell and Environment 45:3233−48

doi: 10.1111/pce.14429
[24]

Tian C, Zhai L, Zhu W, Qi X, Yu Z, et al. 2022. Characterization of the TCP gene family in Chrysanthemum nankingense and the role of CnTCP4 in cold tolerance. Plants 11:936

doi: 10.3390/plants11070936
[25]

Huang F, Shi C, Zhang Y, Hou X. 2022. Genome-wide identification and characterization of TCP family genes in Pak-Choi [Brassica campestris (syn. Brassica rapa) ssp. chinensis var. communis]. Frontiers in Plant Science 13:854171

doi: 10.3389/fpls.2022.854171
[26]

Urano K, Maruyama K, Koyama T, Gonzalez N, Inzé D, et al. 2022. CIN-like TCP13 is essential for plant growth regulation under dehydration stress. Plant Molecular Biology 108:257−75

doi: 10.1007/s11103-021-01238-5
[27]

Wang Y, Yu Y, Wan H, Tang J, Ni Z. 2022. The sea-island cotton GbTCP4 transcription factor positively regulates drought and salt stress responses. Plant Science 322:111329

doi: 10.1016/j.plantsci.2022.111329
[28]

Rueda-Romero P, Barrero-Sicilia C, Gómez-Cadenas A, Carbonero P, Oñate-Sánchez L. 2012. Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14. Journal of Experimental Botany 63:1937−49

doi: 10.1093/jxb/err388
[29]

Sarvepalli K, Nath U. 2011. Interaction of TCP4-mediated growth module with phytohormones. Plant Signaling & Behavior 6:1440−43

doi: 10.4161/psb.6.10.17097
[30]

Yu X, Zhang W, Zhang Y, Zhang X, Lang D, et al. 2019. The roles of methyl jasmonate to stress in plants. Functional Plant Biology 46:197−212

doi: 10.1071/FP18106
[31]

Huang H, Liu B, Liu L, Song S. 2017. Jasmonate action in plant growth and development. Journal of Experimental Botany 68:1349−59

doi: 10.1093/jxb/erw495
[32]

Delgado LD, Zúñiga PE, Figueroa NE, Pastene E, Escobar-Sepúlveda HF, et al. 2018. Application of a JA-Ile biosynthesis inhibitor to methyl jasmonate-treated strawberry fruit induces upregulation of specific MBW complex-related genes and accumulation of proanthocyanidins. Molecules 23:1433

doi: 10.3390/molecules23061433
[33]

Guo H, Wang Y, Wang L, Hu P, Wang Y, et al. 2017. Expression of the MYB transcription factor gene BplMYB46affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla. Plant Biotechnology Journal 15:107−21

doi: 10.1111/pbi.12595
[34]

Liu S, Mi X, Zhang R, An Y, Zhou Q, et al. 2019. Integrated analysis of miRNAs and their targets reveals that miR319c/TCP2 regulates apical bud burst in tea plant (Camellia sinensis). Planta 250:1111−29

doi: 10.1007/s00425-019-03207-1
[35]

Yu S, Li P, Zhao X, Tan M, Ahmad MZ, et al. 2021. CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis). Horticulture Research 8:104

doi: 10.1038/s41438-021-00538-7
[36]

Liu L, Chen H, Zhu J, Tao L, Wei C. 2022. miR319a targeting of CsTCP10 plays an important role in defense against gray blight disease in tea plant (Camellia sinensis). Tree Physiology 42:1450−62

doi: 10.1093/treephys/tpac009
[37]

Wu ZJ, Wang WL, Zhuang J. 2017. TCP family genes control leaf development and its responses to hormonal stimuli in tea plant Camellia sinensis (L.) O. Kuntze. Plant Growth Regulation 83:43−53

doi: 10.1007/s10725-017-0282-3
[38]

Shang X, Han Z, Zhang D, Wang Y, Qin H, et al. 2022. Genome-wide analysis of the TCP gene family and their expression pattern analysis in tea plant (Camellia sinensis). Frontiers in Plant Science 13:840350

doi: 10.3389/fpls.2022.840350
[39]

Kieffer M, Master V, Waites R, Davies B. 2011. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. The Plant Journal 68:147−58

doi: 10.1111/j.1365-313X.2011.04674.x
[40]

Li ZY, Li B, Dong AW. 2012. The Arabidopsis transcription factor AtTCP15 regulates endoreduplication by modulating expression of key cell-cycle genes. Molecular Plant 5:270−80

doi: 10.1093/mp/ssr086
[41]

Herve C, Dabos P, Bardet C, Jauneau A, Auriac MC, et al. 2009. In Vivo Interference with AtTCP20 Function Induces Severe Plant Growth Alterations and Deregulates the Expression of Many Genes Important for Development. Plant Physiology 149:1462−77

doi: 10.1104/pp.108.126136
[42]

Danisman S, van der Wal F, Dhondt S, Waites R, de Folter S, et al. 2012. Arabidopsis Class I and Class II TCP Transcription Factors Regulate Jasmonic Acid Metabolism and Leaf Development Antagonistically. Plant Physiology 159:1511−23

doi: 10.1104/pp.112.200303
[43]

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43

doi: 10.1046/j.1365-313x.1998.00343.x
[44]

Han Z, Zhang C, Zhang H, Duan Y, Zou Z, et al. 2022. CsMYB transcription factors participate in jasmonic acid signal transduction in response to cold stress in tea plant (Camellia sinensis). Plants 11:2869

doi: 10.3390/plants11212869
[45]

Li Q, Li Y, Wu X, Zhou L, Zhu X, et al. 2017. Metal transport protein 8 in Camellia sinensis confers superior manganese tolerance when expressed in yeast and Arabidopsis thaliana. Scientific Reports 7:39915

doi: 10.1038/srep39915
[46]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[47]

Yang M, He G, Hou Q, Fan Y, Duan L, et al. 2022. Systematic analysis and expression profiles of TCP gene family in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) revealed the potential function of FtTCP15 and FtTCP18 in response to abiotic stress. BMC Genomics 23:415

doi: 10.1186/s12864-022-08618-1
[48]

Zhu L, Li S, Ma Q, Wen J, Yan K, Li Q. 2022. The Acer palmatum TCP transcription factor controls leaf morphogenesis, accelerates senescence, and affects floweringControls Leaf Morphogenesis, Accelerates Senescence, and Affects Flowering via miR319 in Arabidopsis thaliana. Journal of Plant Growth Regulation 41:244−56

doi: 10.1007/s00344-021-10299-1
[49]

Qi X, Qu Y, Jiang J, Guan Y, Song A, et al. 2021. Heterologous expression of Chrysanthemum nankingense TCP13 suppresses leaf development in Arabidopsis thaliana. Plant Growth Regulation 95:331−41

doi: 10.1007/s10725-021-00743-3
[50]

Wang Y, Yu Y, Wang J, Chen Q, Ni Z. 2020. Heterologous overexpression of the GbTCP5 gene increased root hair length, root hair and stem trichome density, and lignin content in transgenic Arabidopsis. Gene 758:144954

doi: 10.1016/j.gene.2020.144954
[51]

Yang Q, Li Q, Gu L, Chen P, Zhang Y, et al. 2022. The jujube TCP transcription factor ZjTCP16 regulates plant growth and cell size by affecting the expression of genes involved in plant morphogenesis. Forests 13:723

doi: 10.3390/f13050723
[52]

Liu Z, Yang J, Li S, Liu L, Qanmber G, et al. 2021. Systematic characterization of TCP gene family in four cotton species revealed that GhTCP62 regulates branching in Arabidopsis. Biology 10:1104

doi: 10.3390/biology10111104
[53]

Wen Z, Cao X, Hou Q, Cai X, Hong Y, et al. 2023. Expression profiling and function analysis highlight the positive involvement of sweet cherry PavTCP17 in regulating flower bud dormancy. Scientia Horticulturae 318:112138

doi: 10.1016/j.scienta.2023.112138
[54]

Efroni I, Blum E, Goldshmidt A, Eshed Y. 2008. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. The Plant Cell 20:2293−306

doi: 10.1105/tpc.107.057521
[55]

Pan J, Hu Y, Wang H, Guo Q, Chen Y, et al. 2020. Molecular mechanism underlying the synergetic effect of jasmonate on abscisic acid signaling during seed germination in Arabidopsis. The Plant Cell 32:3846−65

doi: 10.1105/tpc.19.00838
[56]

Liu S, Yin X, Feng T, Kang Z, Zhang X, et al. 2022. Genome-wide identification and expression analysis of the TCP genes in Senna tora reveal the regulatory mechanism of their response to MeJA. Industrial Crops and Products 187:115511

doi: 10.1016/j.indcrop.2022.115511
[57]

Yao Y, Wang W, Sun Y, Cao J, Wei J, Liu J. 2021. Identification of HrTCP transcription factors in seabuckthorn (Hippophae rhamnoides) and its response to drought stress. Acta Botanica Boreali-Occidentalia Sinica 41:576−84

[58]

Yu L, Chen Q, Zheng J, Xu F, Ye J, et al. 2022. Genome-wide identification and expression pattern analysis of the TCP transcription factor family in Ginkgo biloba. Plant Signaling & Behavior 17:1994248

doi: 10.1080/15592324.2021.1994248
[59]

Wen Y, Raza A, Chu W, Zou X, Cheng H, et al. 2021. Comprehensive in silico characterization and expression profiling of TCP gene family in rapeseed. Frontiers in Genetics 12:794297

doi: 10.3389/fgene.2021.794297
[60]

Zhang H, Li W, Niu D, Wang Z, Yan X, et al. 2019. Tobacco transcription repressors NtJAZ: Potential involvement in abiotic stress response and glandular trichome induction. Plant Physiology and Biochemistry 141:388−97

doi: 10.1016/j.plaphy.2019.06.021
[61]

Shen J, Zou Z, Xing H, Duan Y, Zhu X, et al. 2020. Genome-wide analysis reveals stress and hormone responsive patterns of JAZ family genes in Camellia Sinensis. International Journal of Molecular Sciences 21:2433

doi: 10.3390/ijms21072433
[62]

Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, et al. 2021. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum 172:847−68

doi: 10.1111/ppl.13268
[63]

Liu H, Gao Y, Wu M, Shi Y, Wang H, et al. 2020. TCP10, a TCP transcription factor in moso bamboo (Phyllostachys edulis), confers drought tolerance to transgenic plants. Environmental and Experimental Botany 172:104002

doi: 10.1016/j.envexpbot.2020.104002
[64]

Du J, Hu S, Yu Q, Wang C, Yang Y, et al. 2017. Genome-wide identification and characterization of BrrTCP transcription factors in Brassica rapa ssp. rapa. Frontiers in Plant Science 8:1588

doi: 10.3389/fpls.2017.01588
[65]

Mishra S, Sahu G, Shaw BP. 2022. Insight into the cellular and physiological regulatory modulations of Class-I TCP9 to enhance drought and salinity stress tolerance in cowpea. Physiologia Plantarum 174:e13542

doi: 10.1111/ppl.13542
[66]

Wang LW, Li XX, Todoroki Y, Kondo S. 2020. Drought tolerance induced by a combination of abscisic acid and abscinazole in apple seedlings. Acta Horticulturae 1312:181−88

doi: 10.17660/actahortic.2021.1312.27