[1] |
Wardman M. 2001. A review of British evidence on time and service quality valuations. Transportation Research Part E: Logistics and Transportation Review 37:107−28 doi: 10.1016/S1366-5545(00)00012-0 |
[2] |
Hsu SC. 2010. Determinants of passenger transfer waiting time at multi-modal connecting stations. Transportation Research Part E: Logistics and Transportation Review 46:404−13 doi: 10.1016/j.tre.2009.12.002 |
[3] |
Furth PG, Wilson NHM. 1981. Setting frequencies on bus routes: Theory and practice. Transportation Research Record: Journal of the Transportation Research Board 818:1−7 |
[4] |
Hadas Y, Shnaiderman M. 2012. Public-transit frequency setting using minimum-cost approach with stochastic demand and travel time. Transportation Research Part B: Methodological 46:1068−84 doi: 10.1016/j.trb.2012.02.010 |
[5] |
Li Y, Xu W, He S. 2013. Expected value model for optimizing the multiple bus headways. Applied Mathematics and Computation 219:5849−61 doi: 10.1016/j.amc.2012.11.098 |
[6] |
Liu X, Qu X, Ma X. 2021. Improving flex-route transit services with modular autonomous vehicles. Transportation Research Part E: Logistics and Transportation Review 149:102331 doi: 10.1016/j.tre.2021.102331 |
[7] |
Dakic I, Leclercq L, Menendez M. 2021. On the optimization of the bus network design: An analytical approach based on the three-dimensional macroscopic fundamental diagram. Transportation Research Part B: Methodological 149:393−417 doi: 10.1016/j.trb.2021.04.012 |
[8] |
Dakic I, Yang K, Menendez M, Chow JYJ. 2021. On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram. Transportation Research Part B: Methodological 148:38−59 doi: 10.1016/j.trb.2021.04.005 |
[9] |
Ibarra-Rojas OJ, Delgado F, Giesen R, Muñoz JC. 2015. Planning, operation, and control of bus transport systems: A literature review. Transportation Research Part B: Methodological 77:38−75 doi: 10.1016/j.trb.2015.03.002 |
[10] |
Constantin I, Florian M. 1995. Optimizing frequencies in a transit network: a nonlinear bi-level programming approach. International Transactions in Operational Research 2:149−64 doi: 10.1111/j.1475-3995.1995.tb00011.x |
[11] |
Gao Z, Sun H, Shan LL. 2004. A continuous equilibrium network design model and algorithm for transit systems. Transportation Research Part B: Methodological 38:235−50 doi: 10.1016/S0191-2615(03)00011-0 |
[12] |
Huang Z, Ren G, Liu H. 2013. Optimizing bus frequencies under uncertain demand: case study of the transit network in a developing city. Mathematical Problems in Engineering 2013:375084 doi: 10.1155/2013/375084 |
[13] |
Yoo GS, Kim DK, Chon KS. 2010. Frequency design in urban transit networks with variable demand: Model and algorithm. Ksce Journal of Civil Engineering 14:403−11 doi: 10.1007/s12205-010-0403-2 |
[14] |
Chiou SW. 2005. Bilevel programming for the continuous transport network design problem. Transportation Research Part B: Methodological 39:361−83 doi: 10.1016/S0191-2615(04)00085-2 |
[15] |
Martínez H, Mauttone A, Urquhart ME. 2014. Frequency optimization in public transportation systems: Formulation and metaheuristic approach. European Journal of Operational Research 236:27−36 doi: 10.1016/j.ejor.2013.11.007 |
[16] |
Sivakumaran K, Li Y, Cassidy MJ, Madanat S. 2012. Cost-saving properties of schedule coordination in a simple trunk-and-feeder transit system. Transportation Research Part A: Policy and Practice 46:131−39 doi: 10.1016/j.tra.2011.09.013 |
[17] |
Huang D, Liu Z, Liu P, Chen J. 2016. Optimal transit fare and service frequency of a nonlinear origin-destination based fare structure. Transportation Research Part E: Logistics and Transportation Review 96:1−19 doi: 10.1016/j.tre.2016.10.004 |
[18] |
LeBlanc LJ. 1988. Transit system network design. Transportation Research Part B: Methodological 22:383−90 doi: 10.1016/0191-2615(88)90042-2 |
[19] |
Ukkusuri S, Doan K, Aziz HMA. 2013. A bi-level formulation for the combined dynamic equilibrium based traffic signal control. Procedia - Social and Behavioral Sciences 80:729−52 doi: 10.1016/j.sbspro.2013.05.039 |
[20] |
Londono G, Lozano A. 2014. A bi-level optimization program with equilibrium constraints for an urban network dependent on time. Transportation Research Procedia 3:905−14 doi: 10.1016/j.trpro.2014.10.070 |
[21] |
Han K, Sun Y, Liu H, Friesz TL, Yao T. 2015. A bi-level model of dynamic traffic signal control with continuum approximation. Transportation Research Part C: Emerging Technologies 55:409−31 doi: 10.1016/j.trc.2015.03.037 |
[22] |
Ambühl L, Loder A, Zheng N, Axhausen KW, Menendez M. 2019. Approximative network partitioning for MFDs from stationary sensor data. Transportation Research Record 2673:94−103 doi: 10.1177/0361198119843264 |
[23] |
Knoop VL, van Lint H, Hoogendoorn SP. 2015. Traffic dynamics: Its impact on the Macroscopic Fundamental Diagram. Physica A: Statistical Mechanics and its Applications 438:236−50 doi: 10.1016/j.physa.2015.06.016 |
[24] |
Loder A, Ambühl L, Menendez M, Axhausen KW. 2017. Empirics of multi-modal traffic networks – Using the 3D macroscopic fundamental diagram. Transportation Research Part C: Emerging Technologies 82:88−101 doi: 10.1016/j.trc.2017.06.009 |
[25] |
Geroliminis N, Zheng N, Ampountolas K. 2014. A three-dimensional macroscopic fundamental diagram for mixed bi-modal urban networks. Transportation Research Part C: Emerging Technologies 42:168−81 doi: 10.1016/j.trc.2014.03.004 |
[26] |
Dakic I, Menendez M. 2018. On the use of Lagrangian observations from public transport and probe vehicles to estimate car space-mean speeds in bi-modal urban networks. Transportation Research Part C: Emerging Technologies 91:317−34 doi: 10.1016/j.trc.2018.04.004 |
[27] |
Paipuri M, Leclercq L. 2020. Bi-modal macroscopic traffic dynamics in a single region. Transportation Research Part B: Methodological 133:257−90 doi: 10.1016/j.trb.2020.01.007 |
[28] |
Yperman I. 2007. The link transmission model for dynamic network loading. Ph.D. Thesis. Katholieke Universiteit Leuven, Netherlands |
[29] |
Long J, Chen J, Szeto WY, Shi Q. 2018. Link-based system optimum dynamic traffic assignment problems with environmental objectives. Transportation Research Part D: Transport and Environment 60:56−75 doi: 10.1016/j.trd.2016.06.003 |
[30] |
Hoogendoorn SP, Bovy PHL. 2004. Dynamic user-optimal assignment in continuous time and space. Transportation Research Part B: Methodological 38:571−92 doi: 10.1016/j.trb.2002.12.001 |
[31] |
Du J, Wong SC, Shu CW, Xiong T, Zhang M, et al. 2013. Revisiting Jiang's dynamic continuum model for urban cities. Transportation Research Part B: Methodological 56:96−119 doi: 10.1016/j.trb.2013.07.001 |
[32] |
Jiang Y, Wong SC, Ho HW, Zhang P, Liu R, et al. 2011. A dynamic traffic assignment model for a continuum transportation system. Transportation Research Part B: Methodological 45:343−63 doi: 10.1016/j.trb.2010.07.003 |
[33] |
Daganzo CF, Geroliminis N. 2008. An analytical approximation for the macroscopic fundamental diagram of urban traffic. Transportation Research Part B: Methodological 42:771−81 doi: 10.1016/j.trb.2008.06.008 |
[34] |
Yildirimoglu M, Geroliminis N. 2014. Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams. Transportation Research Part B: Methodological 70:186−200 doi: 10.1016/j.trb.2014.09.002 |
[35] |
Mariotte G, Leclercq L, Batista SFA, Krug J, Paipuri M. 2020. Calibration and validation of multi-reservoir MFD models: A case study in Lyon. Transportation Research Part B: Methodological 136:62−86 doi: 10.1016/j.trb.2020.03.006 |
[36] |
Bao Y, Verhoef ET, Koster P. 2021. Leaving the tub: The nature and dynamics of hypercongestion in a bathtub model with a restricted downstream exit. Transportation Research Part E: Logistics and Transportation Review 152:102389 doi: 10.1016/j.tre.2021.102389 |
[37] |
Aghamohammadi R, Laval J. 2019. A continuum model for cities based on the macroscopic fundamental diagram: A semi-lagrangian solution method. Transportation Research Procedia 38:380−400 doi: 10.1016/j.trpro.2019.05.021 |
[38] |
Aghamohammadi R, Laval JA. 2020. Dynamic traffic assignment using the macroscopic fundamental diagram: A Review of vehicular and pedestrian flow models. Transportation Research Part B: Methodological 137:99−118 doi: 10.1016/j.trb.2018.10.017 |
[39] |
Ampountolas K, Zheng N, Geroliminis N. 2017. Macroscopic modelling and robust control of bi-modal multi-region urban road networks. Transportation Research Part B: Methodological 104:616−37 doi: 10.1016/j.trb.2017.05.007 |
[40] |
Arnott R. 2013. A bathtub model of downtown traffic congestion. Journal of Urban Economics 76:110−21 doi: 10.1016/j.jue.2013.01.001 |
[41] |
Leclercq L, Sénécat A, Mariotte G. 2017. Dynamic macroscopic simulation of on-street parking search: A trip-based approach. Transportation Research Part B: Methodological 101:268−82 doi: 10.1016/j.trb.2017.04.004 |
[42] |
Mariotte G, Leclercq L. 2019. Flow exchanges in multi-reservoir systems with spillbacks. Transportation Research Part B: Methodological 122:327−49 doi: 10.1016/j.trb.2019.02.014 |
[43] |
Li M, Lin X, Chen X. 2017. A surrogate-based optimization algorithm for network design problems. Frontiers of Information Technology & Electronic Engineering 18:1693−704 doi: 10.1631/FITEE.1601403 |
[44] |
Liu H, Szeto WY, Long J. 2019. Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic. Transportation Research Part E: Logistics and Transportation Review 127:284−307 doi: 10.1016/j.tre.2019.05.010 |
[45] |
Panicucci B, Pappalardo M, Passacantando M. 2007. A path-based double projection method for solving the asymmetric traffic network equilibrium problem. Optimization Letters 1:171−85 doi: 10.1007/s11590-006-0002-9 |
[46] |
Batista SFA, Leclercq L, Geroliminis N. 2019. Estimation of regional trip length distributions for the calibration of the aggregated network traffic models. Transportation Research Part B: Methodological 122:192−217 doi: 10.1016/j.trb.2019.02.009 |
[47] |
Geroliminis N, Daganzo CF. 2008. Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transportation Research Part B: Methodological 42:759−70 doi: 10.1016/j.trb.2008.02.002 |
[48] |
Little JDC. 1961. A proof for the queuing formula: L = λW. Operations Research 9:383−87 doi: 10.1287/opre.9.3.383 |
[49] |
Leclercq L, Becarie C. 2012. Meso lighthill-whitham and richards model designed for network applications. Transportation Research Borad 91st Annual Meeting. Washington D.C., United States. |
[50] |
Liu H, Wang DZW. 2017. Locating multiple types of charging facilities for battery electric vehicles. Transportation Research Part B: Methodological 103:30−55 doi: 10.1016/j.trb.2017.01.005 |
[51] |
Regis RG. 2011. Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions. Computers & Operations Research 38:837−53 doi: 10.1016/j.cor.2010.09.013 |