[1]

Wardman M. 2001. A review of British evidence on time and service quality valuations. Transportation Research Part E: Logistics and Transportation Review 37:107−28

doi: 10.1016/S1366-5545(00)00012-0
[2]

Hsu SC. 2010. Determinants of passenger transfer waiting time at multi-modal connecting stations. Transportation Research Part E: Logistics and Transportation Review 46:404−13

doi: 10.1016/j.tre.2009.12.002
[3]

Furth PG, Wilson NHM. 1981. Setting frequencies on bus routes: Theory and practice. Transportation Research Record: Journal of the Transportation Research Board 818:1−7

[4]

Hadas Y, Shnaiderman M. 2012. Public-transit frequency setting using minimum-cost approach with stochastic demand and travel time. Transportation Research Part B: Methodological 46:1068−84

doi: 10.1016/j.trb.2012.02.010
[5]

Li Y, Xu W, He S. 2013. Expected value model for optimizing the multiple bus headways. Applied Mathematics and Computation 219:5849−61

doi: 10.1016/j.amc.2012.11.098
[6]

Liu X, Qu X, Ma X. 2021. Improving flex-route transit services with modular autonomous vehicles. Transportation Research Part E: Logistics and Transportation Review 149:102331

doi: 10.1016/j.tre.2021.102331
[7]

Dakic I, Leclercq L, Menendez M. 2021. On the optimization of the bus network design: An analytical approach based on the three-dimensional macroscopic fundamental diagram. Transportation Research Part B: Methodological 149:393−417

doi: 10.1016/j.trb.2021.04.012
[8]

Dakic I, Yang K, Menendez M, Chow JYJ. 2021. On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram. Transportation Research Part B: Methodological 148:38−59

doi: 10.1016/j.trb.2021.04.005
[9]

Ibarra-Rojas OJ, Delgado F, Giesen R, Muñoz JC. 2015. Planning, operation, and control of bus transport systems: A literature review. Transportation Research Part B: Methodological 77:38−75

doi: 10.1016/j.trb.2015.03.002
[10]

Constantin I, Florian M. 1995. Optimizing frequencies in a transit network: a nonlinear bi-level programming approach. International Transactions in Operational Research 2:149−64

doi: 10.1111/j.1475-3995.1995.tb00011.x
[11]

Gao Z, Sun H, Shan LL. 2004. A continuous equilibrium network design model and algorithm for transit systems. Transportation Research Part B: Methodological 38:235−50

doi: 10.1016/S0191-2615(03)00011-0
[12]

Huang Z, Ren G, Liu H. 2013. Optimizing bus frequencies under uncertain demand: case study of the transit network in a developing city. Mathematical Problems in Engineering 2013:375084

doi: 10.1155/2013/375084
[13]

Yoo GS, Kim DK, Chon KS. 2010. Frequency design in urban transit networks with variable demand: Model and algorithm. Ksce Journal of Civil Engineering 14:403−11

doi: 10.1007/s12205-010-0403-2
[14]

Chiou SW. 2005. Bilevel programming for the continuous transport network design problem. Transportation Research Part B: Methodological 39:361−83

doi: 10.1016/S0191-2615(04)00085-2
[15]

Martínez H, Mauttone A, Urquhart ME. 2014. Frequency optimization in public transportation systems: Formulation and metaheuristic approach. European Journal of Operational Research 236:27−36

doi: 10.1016/j.ejor.2013.11.007
[16]

Sivakumaran K, Li Y, Cassidy MJ, Madanat S. 2012. Cost-saving properties of schedule coordination in a simple trunk-and-feeder transit system. Transportation Research Part A: Policy and Practice 46:131−39

doi: 10.1016/j.tra.2011.09.013
[17]

Huang D, Liu Z, Liu P, Chen J. 2016. Optimal transit fare and service frequency of a nonlinear origin-destination based fare structure. Transportation Research Part E: Logistics and Transportation Review 96:1−19

doi: 10.1016/j.tre.2016.10.004
[18]

LeBlanc LJ. 1988. Transit system network design. Transportation Research Part B: Methodological 22:383−90

doi: 10.1016/0191-2615(88)90042-2
[19]

Ukkusuri S, Doan K, Aziz HMA. 2013. A bi-level formulation for the combined dynamic equilibrium based traffic signal control. Procedia - Social and Behavioral Sciences 80:729−52

doi: 10.1016/j.sbspro.2013.05.039
[20]

Londono G, Lozano A. 2014. A bi-level optimization program with equilibrium constraints for an urban network dependent on time. Transportation Research Procedia 3:905−14

doi: 10.1016/j.trpro.2014.10.070
[21]

Han K, Sun Y, Liu H, Friesz TL, Yao T. 2015. A bi-level model of dynamic traffic signal control with continuum approximation. Transportation Research Part C: Emerging Technologies 55:409−31

doi: 10.1016/j.trc.2015.03.037
[22]

Ambühl L, Loder A, Zheng N, Axhausen KW, Menendez M. 2019. Approximative network partitioning for MFDs from stationary sensor data. Transportation Research Record 2673:94−103

doi: 10.1177/0361198119843264
[23]

Knoop VL, van Lint H, Hoogendoorn SP. 2015. Traffic dynamics: Its impact on the Macroscopic Fundamental Diagram. Physica A: Statistical Mechanics and its Applications 438:236−50

doi: 10.1016/j.physa.2015.06.016
[24]

Loder A, Ambühl L, Menendez M, Axhausen KW. 2017. Empirics of multi-modal traffic networks – Using the 3D macroscopic fundamental diagram. Transportation Research Part C: Emerging Technologies 82:88−101

doi: 10.1016/j.trc.2017.06.009
[25]

Geroliminis N, Zheng N, Ampountolas K. 2014. A three-dimensional macroscopic fundamental diagram for mixed bi-modal urban networks. Transportation Research Part C: Emerging Technologies 42:168−81

doi: 10.1016/j.trc.2014.03.004
[26]

Dakic I, Menendez M. 2018. On the use of Lagrangian observations from public transport and probe vehicles to estimate car space-mean speeds in bi-modal urban networks. Transportation Research Part C: Emerging Technologies 91:317−34

doi: 10.1016/j.trc.2018.04.004
[27]

Paipuri M, Leclercq L. 2020. Bi-modal macroscopic traffic dynamics in a single region. Transportation Research Part B: Methodological 133:257−90

doi: 10.1016/j.trb.2020.01.007
[28]

Yperman I. 2007. The link transmission model for dynamic network loading. Ph.D. Thesis. Katholieke Universiteit Leuven, Netherlands

[29]

Long J, Chen J, Szeto WY, Shi Q. 2018. Link-based system optimum dynamic traffic assignment problems with environmental objectives. Transportation Research Part D: Transport and Environment 60:56−75

doi: 10.1016/j.trd.2016.06.003
[30]

Hoogendoorn SP, Bovy PHL. 2004. Dynamic user-optimal assignment in continuous time and space. Transportation Research Part B: Methodological 38:571−92

doi: 10.1016/j.trb.2002.12.001
[31]

Du J, Wong SC, Shu CW, Xiong T, Zhang M, et al. 2013. Revisiting Jiang's dynamic continuum model for urban cities. Transportation Research Part B: Methodological 56:96−119

doi: 10.1016/j.trb.2013.07.001
[32]

Jiang Y, Wong SC, Ho HW, Zhang P, Liu R, et al. 2011. A dynamic traffic assignment model for a continuum transportation system. Transportation Research Part B: Methodological 45:343−63

doi: 10.1016/j.trb.2010.07.003
[33]

Daganzo CF, Geroliminis N. 2008. An analytical approximation for the macroscopic fundamental diagram of urban traffic. Transportation Research Part B: Methodological 42:771−81

doi: 10.1016/j.trb.2008.06.008
[34]

Yildirimoglu M, Geroliminis N. 2014. Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams. Transportation Research Part B: Methodological 70:186−200

doi: 10.1016/j.trb.2014.09.002
[35]

Mariotte G, Leclercq L, Batista SFA, Krug J, Paipuri M. 2020. Calibration and validation of multi-reservoir MFD models: A case study in Lyon. Transportation Research Part B: Methodological 136:62−86

doi: 10.1016/j.trb.2020.03.006
[36]

Bao Y, Verhoef ET, Koster P. 2021. Leaving the tub: The nature and dynamics of hypercongestion in a bathtub model with a restricted downstream exit. Transportation Research Part E: Logistics and Transportation Review 152:102389

doi: 10.1016/j.tre.2021.102389
[37]

Aghamohammadi R, Laval J. 2019. A continuum model for cities based on the macroscopic fundamental diagram: A semi-lagrangian solution method. Transportation Research Procedia 38:380−400

doi: 10.1016/j.trpro.2019.05.021
[38]

Aghamohammadi R, Laval JA. 2020. Dynamic traffic assignment using the macroscopic fundamental diagram: A Review of vehicular and pedestrian flow models. Transportation Research Part B: Methodological 137:99−118

doi: 10.1016/j.trb.2018.10.017
[39]

Ampountolas K, Zheng N, Geroliminis N. 2017. Macroscopic modelling and robust control of bi-modal multi-region urban road networks. Transportation Research Part B: Methodological 104:616−37

doi: 10.1016/j.trb.2017.05.007
[40]

Arnott R. 2013. A bathtub model of downtown traffic congestion. Journal of Urban Economics 76:110−21

doi: 10.1016/j.jue.2013.01.001
[41]

Leclercq L, Sénécat A, Mariotte G. 2017. Dynamic macroscopic simulation of on-street parking search: A trip-based approach. Transportation Research Part B: Methodological 101:268−82

doi: 10.1016/j.trb.2017.04.004
[42]

Mariotte G, Leclercq L. 2019. Flow exchanges in multi-reservoir systems with spillbacks. Transportation Research Part B: Methodological 122:327−49

doi: 10.1016/j.trb.2019.02.014
[43]

Li M, Lin X, Chen X. 2017. A surrogate-based optimization algorithm for network design problems. Frontiers of Information Technology & Electronic Engineering 18:1693−704

doi: 10.1631/FITEE.1601403
[44]

Liu H, Szeto WY, Long J. 2019. Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic. Transportation Research Part E: Logistics and Transportation Review 127:284−307

doi: 10.1016/j.tre.2019.05.010
[45]

Panicucci B, Pappalardo M, Passacantando M. 2007. A path-based double projection method for solving the asymmetric traffic network equilibrium problem. Optimization Letters 1:171−85

doi: 10.1007/s11590-006-0002-9
[46]

Batista SFA, Leclercq L, Geroliminis N. 2019. Estimation of regional trip length distributions for the calibration of the aggregated network traffic models. Transportation Research Part B: Methodological 122:192−217

doi: 10.1016/j.trb.2019.02.009
[47]

Geroliminis N, Daganzo CF. 2008. Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transportation Research Part B: Methodological 42:759−70

doi: 10.1016/j.trb.2008.02.002
[48]

Little JDC. 1961. A proof for the queuing formula: L = λW. Operations Research 9:383−87

doi: 10.1287/opre.9.3.383
[49]

Leclercq L, Becarie C. 2012. Meso lighthill-whitham and richards model designed for network applications. Transportation Research Borad 91st Annual Meeting. Washington D.C., United States.

[50]

Liu H, Wang DZW. 2017. Locating multiple types of charging facilities for battery electric vehicles. Transportation Research Part B: Methodological 103:30−55

doi: 10.1016/j.trb.2017.01.005
[51]

Regis RG. 2011. Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions. Computers & Operations Research 38:837−53

doi: 10.1016/j.cor.2010.09.013