[1]

Zheng Y, Ley SH, Hu FB. 2018. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology 14:88−98

doi: 10.1038/nrendo.2017.151
[2]

Magliano DJ, Boyko EJ, committee IDFDAtes. 2021. IDF Diabetes Atlas 2021.10th Edition. Brussels: International Diabetes Federation. pp. 33

[3]

Fu QY, Li QS, Lin XM, Qiao RY, Yang R, et al. 2017. Antidiabetic effects of tea. Molecules 22:849

doi: 10.3390/molecules22050849
[4]

Venkatakrishnan K, Chiu HF, Wang CK. 2019. Popular functional foods and herbs for the management of type-2-diabetes mellitus: A comprehensive review with special reference to clinical trials and its proposed mechanism. Journal of Functional Foods 57:425−38

doi: 10.1016/j.jff.2019.04.039
[5]

Zhang L, Ho CT, Zhou J, Santos JS, Armstrong L, et al. 2019. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 18:1474−95

doi: 10.1111/1541-4337.12479
[6]

Sanlier N, Atik İ, Atik A. 2018. A minireview of effects of white tea consumption on diseases. Trends in Food Science & Technology 82:82−88

doi: 10.1016/j.jpgs.2018.10.004
[7]

Nie J, Yu C, Guo Y, Pei P, Chen L, et al. 2021. Tea consumption and long-term risk of type 2 diabetes and diabetic complications: a cohort study of 0.5 million Chinese adults. The American Journal of Clinical Nutrition 114:194−202

doi: 10.1093/ajcn/nqab006
[8]

Hosoda K, Wang MF, Liao ML, Chuang CK, Iha M, et al. 2003. Antihyperglycemic effect of oolong tea in type 2 diabetes. Diabetes Care 26(6):1714−18

doi: 10.2337/diacare.26.6.1714
[9]

Cao S, Zhao C, Gan R, Xu X, Wei X, et al. 2019. Effects and mechanisms of tea and its bioactive compounds for the prevention and treatment of cardiovascular diseases: An updated review. Antioxidants 8:166

doi: 10.3390/antiox8060166
[10]

Jin Y, Arroo R. 2023. The protective effects of flavonoids and carotenoids against diabetic complications-A review of in vivo evidence. Frontiers in Nutrition 10:1020950

doi: 10.3389/fnut.2023.1020950
[11]

Wan C, Ouyang J, Li M, Rengasamy KRR, Liu Z. 2022. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances. Critical Reviews in Food Science and Nutrition 00:1−29

doi: 10.1080/10408398.2022.2157372
[12]

Duan WX, Yang XH, Zhang HF, Feng J, Zhang MY. 2022. Chemical structure, hypoglycemic activity, and mechanism of action of selenium polysaccharides. Biological Trace Element Research 200:4404−18

doi: 10.1007/s12011-021-03035-z
[13]

Yaribeygi H, Jamialahmadi T, Moallem SA, Sahebkar A. 2021. Boosting GLP-1 by natural products. In Natural Products and Human Diseases. Advances in Experimental Medicine and Biology, eds. Sahebkar A, Sathyapalan T. vol 1328. Cham: Springer. pp. 513−22. https://doi.org/10.1007/978-3-030-73234-9_36

[14]

Proença C, Ribeiro D, Freitas M, Fernandes E. 2022. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: A review. Critical Reviews in Food Science and Nutrition 62:3137−207

doi: 10.1080/10408398.2020.1862755
[15]

Tao W, Zhou Z, Zhao B, Wei T. 2016. Simultaneous determination of eight catechins and four theaflavins in green, black and oolong tea using new HPLC-MS-MS method. Journal of Pharmaceutical and Biomedical Analysis 131:140−45

doi: 10.1016/j.jpba.2016.08.020
[16]

Huang F, Li Y, Yang P, Liu ZH, Huang JA, et al. 2022. Relationship between theanine, catechins and related genes reveals accumulation mechanism during spring and summer in tea plant (Camellia sinensis L.). Scientia Horticulturae 302:111142

doi: 10.1016/j.scienta.2022.111142
[17]

Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, et al. 2019. Health functions and related molecular mechanisms of tea components: An update review. International Journal of Molecular Sciences 20:6196

doi: 10.3390/ijms20246196
[18]

Koch W, Kukula-Koch W, Komsta Ł. 2018. Black tea samples origin discrimination using analytical investigations of secondary metabolites, antiradical scavenging activity and chemometric approach. Molecules 23:513

doi: 10.3390/molecules23030513
[19]

Zhang H, Qi R, Mine Y. 2019. The impact of oolong and black tea polyphenols on human health. Food Bioscience 29:55−61

doi: 10.1016/j.fbio.2019.03.009
[20]

Dai W, Xie D, Lu M, Li P, Lv H, et al. 2017. Characterization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach. Food Research International 96:40−45

doi: 10.1016/j.foodres.2017.03.028
[21]

Fang ZT, Song CJ, Xu HR, Ye JH. 2019. Dynamic changes in flavonol glycosides during production of green, yellow, white, oolong and black teas from Camellia sinensis L. (cv. Fudingdabaicha). International Journal of Food Science & Technology 54:490−98

doi: 10.1111/ijfs.13961
[22]

Du LL, Fu QY, Xiang LP, Zheng XQ, Lu JL, et al. 2016. Tea polysaccharides and their bioactivities. Molecules 21:1449

doi: 10.3390/molecules21111449
[23]

Jahanban-Esfahlan A, Panahi-Azar V. 2016. Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking. Food Chemistry 202:426−31

doi: 10.1016/j.foodchem.2016.02.026
[24]

Ji X, Guo J, Cao T, Zhang T, Liu Y, et al. 2023. Review on mechanisms and structure-activity relationship of hypoglycemic effects of polysaccharides from natural resources. Food Science and Human Wellness 12:1969−80

doi: 10.1016/j.fshw.2023.03.017
[25]

Zhang S, Jin J, Chen J, Ercisli S, Chen L. 2022. Purine alkaloids in tea plants: component, biosynthetic mechanism and genetic variation. Beverage Plant Research 2:13

doi: 10.48130/bpr-2022-0013
[26]

Yang C, Hu Z, Lu M, Li P, Tan J, et al. 2018. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Food Research International 106:909−19

doi: 10.1016/j.foodres.2018.01.069
[27]

Ning JM, Ding D, Song YS, Zhang ZZ, Luo X, et al. 2016. Chemical constituents analysis of white tea of different qualities and different storage times. European Food Research and Technology 242:2093−104

doi: 10.1007/s00217-016-2706-0
[28]

Consortium I, van Woudenbergh GJ, Kuijsten A, Drogan D, van der AD, et al. 2012. Tea consumption and incidence of type 2 diabetes in Europe: the EPIC-InterAct case-cohort study. PLoS ONE 7:e36910

doi: 10.1371/journal.pone.0036910
[29]

Hamer M, Witte DR, Mosdøl A, Marmot MG, Brunner EJ. 2008. Prospective study of coffee and tea consumption in relation to risk of type 2 diabetes mellitus among men and women: the Whitehall II study. British Journal of Nutrition 100:1046−53

doi: 10.1017/S0007114508944135
[30]

van Dieren S, Uiterwaal CSPM, van der Schouw YT, van der A DL, Boer JMA, et al. 2009. Coffee and tea consumption and risk of type 2 diabetes. Diabetologia 52:2561−69

doi: 10.1007/s00125-009-1516-3
[31]

Iso H, Date C, Wakai K, Fukui M, Tamakoshi A. 2006. The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Annals of Internal Medicine 144:554−62

doi: 10.7326/0003-4819-144-8-200604180-00005
[32]

Li Y, Wang C, Huai Q, Guo F, Liu L, et al. 2016. Effects of tea or tea extract on metabolic profiles in patients with type 2 diabetes mellitus: a meta-analysis of ten randomized controlled trials. Diabetes/Metabolism Research and Reviews 32:2−10

doi: 10.1002/dmrr.2641
[33]

Xu R, Bai Y, Yang K, Chen G. 2020. Effects of green tea consumption on glycemic control: A systematic review and meta-analysis of randomized controlled trials. Nutrition & Metabolism 17:56

doi: 10.1186/s12986-020-00469-5
[34]

Huxley R, Lee CMY, Barzi F, Timmermeister L, Czernichow S, et al. 2009. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: A systematic review with meta-analysis. Archives of Internal Medicine 169:2053−63

doi: 10.1001/archinternmed.2009.439
[35]

Jing Y, Han G, Hu Y, Bi Y, Li L, et al. 2009. Tea consumption and risk of type 2 diabetes: A meta-analysis of cohort studies. Journal of General Internal Medicine 24:557−62

doi: 10.1007/s11606-009-0929-5
[36]

Hayashino Y, Fukuhara S, Okamura T, Tanaka T, Ueshima H, et al. 2011. High oolong tea consumption predicts future risk of diabetes among Japanese male workers: a prospective cohort study. Diabetic Medicine 28:805−10

doi: 10.1111/j.1464-5491.2011.03239.x
[37]

Curtis PJ, Sampson M, Potter J, Dhatariya K, Kroon PA, et al. 2012. Chronic ingestion of flavan-3-ols and isoflavones improves insulin sensitivity and lipoprotein status and attenuates estimated 10-year CVD risk in medicated postmenopausal women with type 2 diabetes: A 1-year, double-blind, randomized, controlled trial. Diabetes Care 35:226−32

doi: 10.2337/dc11-1443
[38]

Ma Q, Chen D, Sun HP, Yan N, Xu Y, et al. 2015. Regular Chinese green tea consumption is protective for diabetic retinopathy: A clinic-based case-control study. Journal of Diabetes Research 2015:231570

doi: 10.1155/2015/231570
[39]

Brown AL, Lane J, Coverly J, Stocks J, Jackson S, et al. 2009. Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: Randomized controlled trial. British Journal of Nutrition 101:886−94

doi: 10.1017/S0007114508047727
[40]

Fukino Y, Ikeda A, Maruyama K, Aoki N, Okubo T, et al. 2008. Randomized controlled trial for an effect of green tea-extract powder supplementation on glucose abnormalities. European Journal of Clinical Nutrition 62:953−60

doi: 10.1038/sj.ejcn.1602806
[41]

Ortsäter H, Grankvist N, Wolfram S, Kuehn N, Sjöholm A. 2012. Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice. Nutrition & Metabolism 9:11

doi: 10.1186/1743-7075-9-11
[42]

Tsuneki H, Murata S, Anzawa Y, Soeda Y, Tokai E, et al. 2008. Age-related insulin resistance in hypothalamus and peripheral tissues of orexin knockout mice. Diabetologia 51:657−67

doi: 10.1007/s00125-008-0929-8
[43]

Li M, Luo X, Ho CT, Li D, Guo H, et al. 2022. A new strategy for grading of Lu'an guapian green tea by combination of differentiated metabolites and hypoglycaemia effect. Food Research International 159:111639

doi: 10.1016/j.foodres.2022.111639
[44]

Zhou J, Zhang L, Meng Q, Wang Y, Long P, et al. 2018. Roasting improves the hypoglycemic effects of a large-leaf yellow tea infusion by enhancing the levels of epimerized catechins that inhibit α-glucosidase. Food & Function 9:5162−68

doi: 10.1039/c8fo01429a
[45]

Zhao G, Teng J, Dong R, Ban Q, Yang L, et al. 2023. Alleviating effects and mechanisms of action of large-leaf yellow tea drinking on diabetes and diabetic nephropathy in mice. Food Science and Human Wellness 12:1660−73

doi: 10.1016/j.fshw.2023.02.023
[46]

Neyestani TR, Shariatzade N, Kalayi A, Gharavi A, Khalaji N, et al. 2010. Regular daily intake of black tea improves oxidative stress biomarkers and decreases serum C-reactive protein levels in type 2 diabetic patients. Annals of Nutrition and Metabolism 57:40−49

doi: 10.1159/000312666
[47]

Ramalingam S, Ramasamy SM, Vasu G, Gopalarishnan R. 2020. Antihyperglycemic potential of back tea extract attenuates tricarboxylic acid cycle enzymes by modulating carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Indian Journal of Clinical Biochemistry 35:322−30

doi: 10.1007/s12291-019-00831-2
[48]

Alves MG, Martins AD, Teixeira NF, Rato L, Oliveira PF, et al. 2015. White tea consumption improves cardiac glycolytic and oxidative profile of prediabetic rats. Journal of Functional Foods 14:102−10

doi: 10.1016/j.jff.2015.01.019
[49]

Ding Q, Zheng W, Zhang B, Chen X, Zhang J, et al. 2019. Comparison of hypoglycemic effects of ripened pu-erh tea and raw pu-erh tea in streptozotocin-induced diabetic rats. RSC Advances 9:2967−77

doi: 10.1039/C8RA09259A
[50]

Qi B, Ren D, Li T, Niu P, Zhang X, et al. 2022. Fu Brick Tea manages HFD/STZ-induced type 2 diabetes by regulating the gut microbiota and activating the IRS1/PI3K/Akt signaling pathway. Journal of Agricultural and Food Chemistry 70:8274−87

doi: 10.1021/acs.jafc.2c02400
[51]

Zhu J, Wu M, Zhou H, Cheng L, Wei X, et al. 2021. Liubao brick tea activates the PI3K-Akt signaling pathway to lower blood glucose, metabolic disorders and insulin resistance via altering the intestinal flora. Food Research International 148:110594

doi: 10.1016/j.foodres.2021.110594
[52]

Norris JM, Rich SS. 2012. Genetics of glucose homeostasis: implications for insulin resistance and metabolic syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology 32:2091−96

doi: 10.1161/ATVBAHA.112.255463
[53]

Yu J, Song P, Perry R, Penfold C, Cooper AR. 2017. The effectiveness of green tea or green tea extract on insulin resistance and glycemic control in type 2 diabetes mellitus: A meta-analysis. Diabetes & Metabolism Journal 41:251−62

doi: 10.4093/dmj.2017.41.4.251
[54]

Lin CL, Lin JK. 2008. Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 hepatoma cells. Molecular Nutrition & Food Research 52:930−39

doi: 10.1002/mnfr.200700437
[55]

Qin B, Polansky MM, Harry D, Anderson RA. 2010. Green tea polyphenols improve cardiac muscle mRNA and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats. Molecular Nutrition & Food Research 54:S14−S23

doi: 10.1002/mnfr.200900306
[56]

Luo C, Yang H, Tang C, Yao G, Kong L, et al. 2015. Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats. International Immunopharmacology 28:744−50

doi: 10.1016/j.intimp.2015.07.018
[57]

Li B, Fu L, Kojima R, Yamamoto A, Ueno T, et al. 2021. Theaflavins prevent the onset of diabetes through ameliorating glucose tolerance mediated by promoted incretin secretion in spontaneous diabetic Torii rats. Journal of Functional Foods 86:104702

doi: 10.1016/j.jff.2021.104702
[58]

Zhou H, Wu Y, Kim E, Pan H, He P, et al. 2021. Simultaneous tests of theaflavin-3,3'-digallate as an anti-diabetic drug in human hepatoma G2 cells and Zebrafish (Danio rerio). Nutrients 13:4379

doi: 10.3390/nu13124379
[59]

Xu J, Wang M, Zhao J, Wang YH, Tang Q, et al. 2018. Yellow tea (Camellia sinensis L.), a promising Chinese tea:Processing, chemical constituents and health benefits. Food Research International 107:567−77

doi: 10.1016/j.foodres.2018.01.063
[60]

Xiang G, Sun H, Chen Y, Guo H, Liu Y, et al. 2023. Antioxidant and hypoglycemic activity of tea polysaccharides with different degrees of fermentation. International Journal of Biological Macromolecules 228:224−33

doi: 10.1016/j.ijbiomac.2022.12.114
[61]

Lin HC, Lee CT, Yen YY, Chu CL, Hsieh YP, et al. 2019. Systematic review and meta-analysis of anti-hyperglycaemic effects of Pu-erh tea. International Journal of Food Science & Technology 54:516−25

doi: 10.1111/ijfs.13966
[62]

Lee BH, Yan L, Phillips RJ, Reuhs BL, Jones K, et al. 2013. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal α-glucosidase level and are slowly digestible in vivo. PLoS ONE 8:e59745

doi: 10.1371/journal.pone.0059745
[63]

Zheng Y, Tian J, Yang W, Chen S, Liu D, et al. 2020. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chemistry 317:126346

doi: 10.1016/j.foodchem.2020.126346
[64]

Gao J, Zhou M, Chen D, Xu J, Wang Z, et al. 2023. High-throughput screening and investigation of the inhibitory mechanism of α-glucosidase inhibitors in teas using an affinity selection-mass spectrometry method. Food Chemistry 422:136179

doi: 10.1016/j.foodchem.2023.136179
[65]

Sun L, Warren FJ, Netzel G, Gidley MJ. 2016. 3 or 3′-Galloyl substitution plays an important role in association of catechins and theaflavins with porcine pancreatic α-amylase: The kinetics of inhibition of α-amylase by tea polyphenols. Journal of Functional Foods 26:144−56

doi: 10.1016/j.jff.2016.07.012
[66]

Liu S, Ai Z, Meng Y, Chen Y, Ni D. 2021. Comparative studies on the physicochemical profile and potential hypoglycemic activity of different tea extracts: Effect on sucrase-isomaltase activity and glucose transport in Caco-2 cells. Food Research International 148:110604

doi: 10.1016/j.foodres.2021.110604
[67]

Fei Q, Gao Y, Zhang X, Sun Y, Hu B, et al. 2014. Effects of Oolong tea polyphenols, EGCG, and EGCG3″Me on pancreatic α-amylase activity in vitro. Journal of Agricultural and Food Chemistry 62:9507−14

doi: 10.1021/jf5032907
[68]

Şöhretoğlu D, Sari S, Barut B, Özel A. 2018. Discovery of potent α-glucosidase inhibitor flavonols: Insights into mechanism of action through inhibition kinetics and docking simulations. Bioorganic Chemistry 79:257−64

doi: 10.1016/j.bioorg.2018.05.010
[69]

Deng YT, Lin-Shiau SY, Shyur LF, Lin JK. 2015. Pu-erh tea polysaccharides decrease blood sugar by inhibition of α-glucosidase activity in vitro and in mice. Food & Function 6:1539−46

doi: 10.1039/c4fo01025f
[70]

Xu P, Wu J, Zhang Y, Chen H, Wang Y. 2014. Physicochemical characterization of puerh tea polysaccharides and their antioxidant and α-glycosidase inhibition. Journal of Functional Foods 6:545−54

doi: 10.1016/j.jff.2013.11.021
[71]

Zhu J, Zhou H, Zhang J, Li F, Wei K, et al. 2021. Valorization of polysaccharides obtained from dark tea: Preparation, physicochemical, antioxidant, and hypoglycemic properties. Foods 10:2276

doi: 10.3390/foods10102276
[72]

Guo H, Fu MX, Wu DT, Zhao YX, Li H, et al. 2021. Structural characteristics of crude polysaccharides from 12 selected Chinese teas, and their antioxidant and anti-diabetic activities. Antioxidants 10:1562

doi: 10.3390/antiox10101562
[73]

Nie Q, Chen H, Hu J, Fan S, Nie S. 2019. Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota. Critical Reviews in Food Science and Nutrition 59:848−63

doi: 10.1080/10408398.2018.1536646
[74]

Gurung M, Li Z, You H, Rodrigues R, Jump DB, et al. 2020. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51:102590

doi: 10.1016/j.ebiom.2019.11.051
[75]

Han S, Luo Y, Hu Z, Qin D, Luo F. 2022. Targeting gut microbiota in type 2 diabetes mellitus: Potential roles of dietary flavonoids. Food Bioscience 45:101500

doi: 10.1016/j.fbio.2021.101500
[76]

Chen G, Xie M, Wan P, Chen D, Dai Z, et al. 2018. Fuzhuan Brick Tea polysaccharides attenuate metabolic syndrome in high-fat diet induced mice in association with modulation in the gut microbiota. Journal of Agricultural and Food Chemistry 66:2783−95

doi: 10.1021/acs.jafc.8b00296
[77]

Huang H, Chen J, Hu X, Chen Y, Xie J, et al. 2022. Elucidation of the interaction effect between dietary fiber and bound polyphenol components on the anti-hyperglycemic activity of tea residue dietary fiber. Food & Function 13:2710−28

doi: 10.1039/d1fo03682c
[78]

Park JM, Shin Y, Kim SH, Jin M, Choi JJ. 2020. Dietary epigallocatechin-3-gallate alters the gut microbiota of obese diabetic db/db mice: Lactobacillus is a putative target. Journal of Medicinal Food 23:1033−42

doi: 10.1089/jmf.2020.4700
[79]

Li H, Fang Q, Nie Q, Hu J, Yang C, et al. 2020. Hypoglycemic and hypolipidemic mechanism of tea polysaccharides on type 2 diabetic rats via gut microbiota and metabolism alteration. Journal of Agricultural and Food Chemistry 68:10015−28

doi: 10.1021/acs.jafc.0c01968
[80]

Ding Q, Zhang B, Zheng W, Chen X, Zhang J, et al. 2019. Liupao tea extract alleviates diabetes mellitus and modulates gut microbiota in rats induced by streptozotocin and high-fat, high-sugar diet. Biomedicine & Pharmacotherapy 118:109262

doi: 10.1016/j.biopha.2019.109262
[81]

Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. 2013. Diabetes mellitus and inflammation. Current Diabetes Reports 13:435−44

doi: 10.1007/s11892-013-0375-y
[82]

Eitah HE, Maklad YA, Abdelkader NF, Gamal el Din AA, Badawi MA, et al. 2019. Modulating impacts of quercetin/sitagliptin combination on streptozotocin-induced diabetes mellitus in rats. Toxicology and Applied Pharmacology 365:30−40

doi: 10.1016/j.taap.2018.12.011
[83]

Yamauchi R, Kobayashi M, Matsuda Y, Ojika M, Shigeoka S, et al. 2010. Coffee and caffeine ameliorate hyperglycemia, fatty liver, and inflammatory adipocytokine expression in spontaneously diabetic KK-A y mice. Journal of Agricultural and Food Chemistry 58:5597−603

doi: 10.1021/jf904062c
[84]

Lin YL, Tsai SH, Lin-Shiau SY, Ho CT, Lin JK. 1999. Theaflavin-3, 3'-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-κB in macrophages. European Journal of Pharmacology 367:379−88

doi: 10.1016/S0014-2999(98)00953-4
[85]

Shang A, Li J, Zhou DD, Gan RY, Li HB. 2021. Molecular mechanisms underlying health benefits of tea compounds. Free Radical Biology and Medicine 172:181−200

doi: 10.1016/j.freeradbiomed.2021.06.006
[86]

Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, et al. 2002. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. Journal of Biological Chemistry 277:34933−40

doi: 10.1074/jbc.M204672200
[87]

Wolfram S, Raederstorff D, Preller M, Wang Y, Teixeira SR, et al. 2006. Epigallocatechin gallate supplementation alleviates diabetes in rodents. The Journal of Nutrition 136:2512−18

doi: 10.1093/jn/136.10.2512
[88]

Qiu J, Maekawa K, Kitamura Y, Miyata Y, Tanaka K, et al. 2014. Stimulation of glucose uptake by theasinensins through the AMP-activated protein kinase pathway in rat skeletal muscle cells. Biochemical Pharmacology 87:344−51

doi: 10.1016/j.bcp.2013.10.029
[89]

Wang H, Shi S, Bao B, Li X, Wang S. 2015. Structure characterization of an arabinogalactan from green tea and its anti-diabetic effect. Carbohydrate Polymers 124:98−108

doi: 10.1016/j.carbpol.2015.01.070
[90]

Li S, Chen H, Wang J, Wang X, Hu B, et al. 2015. Involvement of the PI3K/Akt signal pathway in the hypoglycemic effects of tea polysaccharides on diabetic mice. International Journal of Biological Macromolecules 81:967−74

doi: 10.1016/j.ijbiomac.2015.09.037
[91]

Xu Y, Zhang M, Wu T, Dai S, Xu J, et al. 2015. The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet. Food & Function 6:297−304

doi: 10.1039/c4fo00970c
[92]

Murase T, Misawa K, Haramizu S, Hase T. 2009. Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Biochemical Pharmacology 78:78−84

doi: 10.1016/j.bcp.2009.03.021
[93]

Anter E, Chen K, Shapira OM, Karas RH, Keaney Jr JF. 2005. p38 mitogen-activated protein kinase activates eNOS in endothelial cells by an estrogen receptor alpha-dependent pathway in response to black tea polyphenols. Circulation Research 96:1072−78

doi: 10.1161/01.RES.0000168807.63013.56
[94]

Kim J, Kim CS, Moon MK, Kim JS. 2015. Epicatechin breaks preformed glycated serum albumin and reverses the retinal accumulation of advanced glycation end products. European Journal of Pharmacology 748:108−14

doi: 10.1016/j.ejphar.2014.12.010
[95]

Borges CM, Papadimitriou A, Duarte DA, Lopes de Faria JM, Lopes de Faria JB. 2016. The use of green tea polyphenols for treating residual albuminuria in diabetic nephropathy: A double-blind randomised clinical trial. Scientific Reports 6:28282

doi: 10.1038/srep28282
[96]

Xia X, Wang X, Wang H, Lin Z, Shao K, et al. 2021. Ameliorative effect of white tea from 50-year-old tree of Camellia sinensis L.(Theaceae) on kidney damage in diabetic mice via SIRT1/AMPK pathway. Journal of Ethnopharmacology 272:113919

doi: 10.1016/j.jep.2021.113919
[97]

Xu P, Chen H, Wang Y, Hochstetter D, Zhou T, et al. 2012. Oral administration of puerh tea polysaccharides lowers blood glucose levels and enhances antioxidant status in alloxan-induced diabetic mice. Journal of Food Science 77:H246−H252

doi: 10.1111/j.1750-3841.2012.02950.x
[98]

Yi W, Xie X, Du M, Bu Y, Wu N, et al. 2017. Green tea polyphenols ameliorate the early renal damage induced by a high-fat diet via ketogenesis/SIRT3 pathway. Oxidative Medicine and Cellular Longevity 2017:9032792

doi: 10.1155/2017/9032792
[99]

Fiorino P, Evangelista FS, Santos F, Magri FMM, Delorenzi JCMOB, et al. 2012. The effects of green tea consumption on cardiometabolic alterations induced by experimental diabetes. Experimental Diabetes Research 2012:309231

doi: 10.1155/2012/309231
[100]

Li YM, Zhang XG, Zhou HL, Chen SH, Zhang Y, et al. 2004. Effects of tea polyphenols on hepatic fibrosis in rats with alcoholic liver disease. Hepatobiliary & Pancreatic Diseases International 3:577−79