[1] |
Bock KW. 2016. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: animal-plant arms-race and co-evolution. Biochemical Pharmacology 99:11−17 doi: 10.1016/j.bcp.2015.10.001 |
[2] |
Wang H, Fan W, Li H, Yang J, Huang J, et al. 2013. Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS One 8(11):e78484 doi: 10.1371/journal.pone.0078484 |
[3] |
Chen TT, Liu FF, Xiao DW, Jiang XY, Li P, et al. 2020. The arabidopsis UDP-glycosyltransferase75B1, conjugates abscisic acid and affects plant response to abiotic stresses. Plant Molecular Biology 102:389−401 doi: 10.1007/s11103-019-00953-4 |
[4] |
Aoi Y, Hira H, Hayakawa Y, Liu H, Fukui K, et al. 2020. UDP-glucosyltransferase UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in arabidopsis. Biochemical and Biophysical Research Communications 532:244−50 doi: 10.1016/j.bbrc.2020.08.026 |
[5] |
Zhao M, Jin J, Wang J, Gao T, Luo Y, et al. 2022. Eugenol functions as a signal mediating cold and drought tolerance via UGT71A59-mediated glucosylation in tea plants. The Plant Journal 109:1489−506 doi: 10.1111/tpj.15647 |
[6] |
Brazier-Hicks M, Offen WA, Gershater MC, Revett TJ, Lim EK, et al. 2007. Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proceedings of the National Academy of Sciences of the United States of America 104:20238−43 doi: 10.1073/pnas.0706421104 |
[7] |
Ma YC, Augé RM, Dong C, Cheng ZM. 2017. Increased salt tolerance with overexpression of cation/proton antiporter 1 genes: a meta-analysis. Plant Biotechnology Journal 15:162−73 doi: 10.1111/pbi.12599 |
[8] |
Dong C, Ma Y, Wisniewski M, Cheng ZM. 2017. Meta-analysis of the effect of overexpression of CBF/DREB family genes on drought stress response. Environmental and Experimental Botany 142:1−14 doi: 10.1016/j.envexpbot.2017.07.014 |
[9] |
Zhang J, Ma Y, Dong C, Terry LA, Watkins CB, et al. 2020. Meta-analysis of the effects of 1-methylcyclopropene (1-MCP) treatment on climacteric fruit ripening. Horticulture Research 7:208 doi: 10.1038/s41438-020-00405-x |
[10] |
Han Z, Shang X, Shao L, Wang Y, Zhu X, et al. 2021. Meta-analysis of the effect of expression of MYB transcription factor genes on abiotic stress. PeerJ 9:e11268 doi: 10.7717/peerj.11268 |
[11] |
Luo SL, Dang LZ, Zhang KQ, Liang LM, Li GH. 2015. Cloning and heterologous expression of UDP-glycosyltransferase genes from Bacillus subtilis and its application in the glycosylation of ginsenoside Rh1. Letters in Applied Microbiology 60:72−8 doi: 10.1111/lam.12339 |
[12] |
Dong T, Hwang I. 2014. Contribution of ABA UDP-glucosyltransferases in coordination of ABA biosynthesis and catabolism for ABA homeostasis. Plant Signaling & Behavior 9:e28888 doi: 10.4161/psb.28888 |
[13] |
Lin TW, Jin-Fa DU, Huang LJ, Xu LU. 2020. Overview of research in ginsenosides glycosyltransferase. Journal of Chinese Materia Medica 45:4574−81 doi: 10.19540/j.cnki.cjcmm.20200508.602 |
[14] |
Rahimi S, Kim J, Mijakovic I, Jung KH, Choi G, et al. 2019. Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnology Advances 37(7):107394 doi: 10.1016/j.biotechadv.2019.04.016 |
[15] |
Yonekura-Sakakibara K, Nakabayashi R, Sugawara S, Tohge T, Ito T, et al. 2014. A flavonoid 3-O-glucoside: 2"-O-glucosyltransferase responsible for terminal modification of pollen-specific flavonols in Arabidopsis thaliana. The Plant Journal 79:769−82 doi: 10.1111/tpj.12668 |
[16] |
Zhao M, Jin J, Gao T, Zhang N, Jing T, et al. 2019. Glucosyltransferase CsUGT78A14 regulates flavonols accumulation and reactive oxygen species scavenging in response to cold stress in Camellia sinensis. Frontiers in Plant Science 10:1675 doi: 10.3389/fpls.2019.01675 |
[17] |
Dai L, Hu Y, Chen CC, Ma L, Guo RT. 2021. Flavonoid C-glycosyltransferases: function, evolutionary relationship, catalytic mechanism and protein engineering. Chembioeng Reviews 8:15−26 doi: 10.1002/cben.202000009 |
[18] |
Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, et al. 2017. The arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. The Plant Journal 89:85−103 doi: 10.1111/tpj.13324 |
[19] |
Li XJ, Zhang JQ, Wu ZC, Lai B, Huang XM, et al. 2016. Functional characterization of a glucosyltransferase gene, LcUFGT1, involved in the formation of cyanidin glucoside in the pericarp of Litchi chinensis. Physiologia Plantarum 156:139−49 doi: 10.1111/ppl.12391 |
[20] |
Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, et al. 2013. The flavonoid biosynthetic pathway in arabidopsis: structural and genetic diversity. Plant Physiology and Biochemistry 72:21−34 doi: 10.1016/j.plaphy.2013.02.001 |
[21] |
Khater F, Fournand D, Vialet S, Meudec E, Cheynier V, et al. 2012. Identification and functional characterization of cDNAs coding for hydroxybenzoate/hydroxycinnamate glucosyltransferases co-expressed with genes related to proanthocyanidin biosynthesis. Journal of Experimental Botany 63:1201−14 doi: 10.1093/jxb/err340 |
[22] |
Mittasch J, Böttcher C, Frolova N, Bönn M, Milkowski C. 2014. Identification of UGT84A13 as a candidate enzyme for the first committed step of gallotannin biosynthesis in pedunculate oak (Quercus robur). Phytochemistry 99:44−51 doi: 10.1016/j.phytochem.2013.11.023 |
[23] |
Mori K, Sugaya S, Gemma H. 2005. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Scientia Horticulturae 105:319−30 doi: 10.1016/j.scienta.2005.01.032 |
[24] |
Liu Q, Dong G, Ma Y, Zhao S, Liu X, et al. 2021. Rice glycosyltransferase gene UGT85E1 is involved in drought stress tolerance through enhancing abscisic acid response. Frontiers in Plant Science 12:790195 doi: 10.3389/fpls.2021.790195 |
[25] |
Ibragimova SS, Kolodyazhnaya YS, Gerasimova SV, Kochetov AV. 2012. Partial suppression of gene encoding proline dehydrogenase enhances plant tolerance to various abiotic stresses. Russian Journal of Plant Physiology 59:88−96 doi: 10.1134/S1021443712010086 |
[26] |
Naing AH, Ai TN, Lim KB, Lee IJ, Kim CK. 2018. Overexpression of Rosea1 from snapdragon enhances anthocyanin accumulation and abiotic stress tolerance in transgenic tobacco. Frontiers in Plant Science 9:1070 doi: 10.3389/fpls.2018.01070 |
[27] |
Shen X, Guo X, Guo X, Zhao D, Zhao W, et al. 2017. PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance. Plant Physiology and Biochemistry 112:302−11 doi: 10.1016/j.plaphy.2017.01.015 |
[28] |
Sivankalyani V, Feygenberg O, Diskin S, Wright B, Alkan N. 2016. Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance. Postharvest Biology and Technology 111:132−39 doi: 10.1016/j.postharvbio.2015.08.001 |
[29] |
Yu C, Xu S, Yin Y. 2016. Transcriptome analysis of the taxodium 'Zhongshanshan 405' roots in response to salinity stress. Plant Physiology and Biochemistry 100:156−65 doi: 10.1016/j.plaphy.2016.01.009 |
[30] |
Zhou K, Hu L, Li Y, Chen X, Zhang Z, et al. 2019. MdUGT88F1-mediated phloridzin biosynthesis regulates apple development and Valsa canker resistance. Plant Physiology 180:2290−305 doi: 10.1104/pp.19.00494 |
[31] |
Mcintosh CA, Owens DK. 2016. Advances in flavonoid glycosyltransferase research: integrating recent findings with long-term citrus studies. Phytochemistry Reviews 15:1075−91 doi: 10.1007/s11101-016-9460-6 |
[32] |
Vogt T, Jones P. 2000. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends in Plant Science 5:380−86 doi: 10.1016/S1360-1385(00)01720-9 |