[1]

Roy SJ, Negrão S, Tester, M. 2014. Salt resistant crop plants. Current Opinion in Biotechnology 26:115−24

doi: 10.1016/j.copbio.2013.12.004
[2]

Tuteja N. 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology 428:419−38

doi: 10.1016/S0076-6879(07)28024-3
[3]

Shavrukov Y. 2013. Salt stress or salt shock: which genes are we studying? Journal of Experimental Botany 64:119−27

doi: 10.1093/jxb/ers316
[4]

Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. 2000. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51:463−99

doi: 10.1146/annurev.arplant.51.1.463
[5]

Ashraf M, Harris PJC. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science 166:3−16

doi: 10.1016/j.plantsci.2003.10.024
[6]

Parida AK, Das AB. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60:324−349

doi: 10.1016/j.ecoenv.2004.06.010
[7]

Zhang H, Han B, Wang T, Chen S, Li H, et al. 2012. Mechanisms of plant salt response: insights from proteomics. Journal of Proteome Research 11:49−67

doi: 10.1021/pr200861w
[8]

Deinlein U, Stephan AB, Horie T, Luo W, Xu G, et al. 2014. Plant salt-tolerance mechanisms. Trends in Plant Science 19:371−79

doi: 10.1016/j.tplants.2014.02.001
[9]

Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics 2014:701596

doi: 10.1155/2014/701596
[10]

Athar HUR, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, et al. 2022. Siddique KHM. Salt stress proteins in plants: An overview. Frontiers in Plant Science 13:999058

doi: 10.3389/fpls.2022.999058
[11]

Chauhan PK, Upadhyay SK, Tripathi M, Singh R, Krishna D, et al. 2022. Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Biotechnology and Genetic Engineering Reviews 00:1−37

doi: 10.1080/02648725.2022.2131958
[12]

Fu H, Yang Y. 2023. How plants tolerate salt stress. Current Issues in Molecular Biology 45:5914−34

doi: 10.3390/cimb45070374
[13]

Ismail A, El-Sharkawy I, Sherif S. 2020. Salt stress signals on demand: Cellular events in the right context. International Journal of Molecular Sciences 21:3918

doi: 10.3390/ijms21113918
[14]

Ma L, Liu X, Lv W, Yang Y. 2022. Molecular mechanisms of plant responses to salt stress. Frontiers in Plant Science 13:934877

doi: 10.3389/fpls.2022.934877
[15]

Morton MJL, Awlia M, Al-Tamimi N, Saade S, Pailles Y, et al. 2019. Salt stress under the scalpel - dissecting the genetics of salt tolerance. The Plant Journal 97:148−63

doi: 10.1111/tpj.14189
[16]

Zhou H, Shi H, Yang Y, Feng X, Chen X, et al. 2023. Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics In press

doi: 10.1016/j.jgg.2023.08.007
[17]

Abogadallah GM. 2010. Insights into the significance of antioxidative defense under salt stress. Plant Signaling & Behavior 5:369−74

doi: 10.4161/psb.5.4.10873
[18]

Menezes-Benavente L, Kernodle SP, Margis-Pinheiro M, Scandalios JG. 2004. Salt induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox Report 9:29−36

doi: 10.1179/135100004225003888
[19]

Maas EV, Hoffman GJ, Chaba GD, Poss JA, Shannon MC. 1983. Salt sensitivity of corn at various growth stages. Irrigation Science 4:45−57

doi: 10.1007/BF00285556
[20]

Alberico GJ, Cramer GR. 1993. Is the salt tolerance of maize related to sodium exclusion? I. Preliminary screening of seven cultivars Journal of Plant Nutrition 16:2289−303

doi: 10.1080/01904169309364687
[21]

Fortmeier R, Schubert S. 1995. Salt tolerance of maize (Zea mays L.): the role of sodium exclusion. Plant, Cell & Environment 18:1041−47

[22]

Mansour MMF, Salama KHA, Ali FZM, Abou Hadid AF. 2005. Cell and plant responses to NaCl stress in Zea mays L. cultivars differing in salt tolerance. General and Applied Plant Physiology 31:29−41

[23]

de Azevedo Neto AD, Prisco JT, Enéas-Filho J, de Abreu CEB, Gomes-Filho E. 2006. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany 56:87−94

doi: 10.1016/j.envexpbot.2005.01.008
[24]

Azooz MM, Ismail AM, Abou Elhamd MF. 2009. Growth, lipid peroxidation and antioxidant enzyme activities as a selection criterion for the salt tolerance of three maize cultivars grown under salinity stress. International Journal of Agriculture and Biology 11:21−26

[25]

Schubert S, Neubert A, Schierholt A, Sümer A, Zörb C. 2009. Development of salt-resistant maize hybrids: The combination of physiological strategies using conventional breeding methods. Plant Science 177:196−202

doi: 10.1016/j.plantsci.2009.05.011
[26]

Gondim FA, Gomes-Filho E, Costa JH, Mendes Alencar NL, Prisco JT. 2012. Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiology and Biochemistry 56:62−71

doi: 10.1016/j.plaphy.2012.04.012
[27]

Parvaiz M. 2013. Response of maize to salt stress a critical review. International Journal of Healthcare Science 1:13−25

[28]

Pitann B, Mohamed AK, Neubert AB, Schubert S. 2013. Tonoplast Na+/H+ antiporters of newly developed maize (Zea mays) hybrids contribute to salt resistance during the second phase of salt stress. Journal of Plant Nutrition and Soil Science 176:148−56

doi: 10.1002/jpln.201200597
[29]

Procházková D, Sairam RK, Lekshmy S, Wilhelmová N. 2013. Differential response of a maize hybrid and its parental lines to salinity stress. Czech Journal of Genetics and Plant Breeding 49:9−15

doi: 10.17221/158/2011-CJGPB
[30]

Amdouni T, MrahS, Msilini N, Zaghdoud M, Ouerghiabidi Z, et al. 2014. Physiological and biochemical responses of two maize cultivars (Corralejo and Tlaltizapn) under salt stress. Journal of Stress Physiology & Biochemistry 10:246−58

[31]

Li Y, Wang TY. 2010. Germplasm base of maize breeding in China and formation of foundation parents. Journal of Maize Sciences 18:1−8

doi: 10.13597/j.cnki.maize.science.2010.05.005
[32]

Ma D, Zhu J. 2012. Analysis on relationship between injuries and osmotic stress induced by salt stress in maize seedlings. Journal of Anhui Agricultural Sciences 40(34):16518−20

doi: 10.13989/j.cnki.0517-6611.2012.34.128
[33]

Chen A. 1989. Observation of the states showing opening and closing stomata of the hybrid rice cultivar under the different temperatures with scanning electron microscope. Journal of Yuzhou University (Natural Sciences Edition) 6(3):45−49

[34]

Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, et al. 2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiology 127:887−98

doi: 10.1104/pp.010318
[35]

Giannopolitis CN, Ries SK. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology 59:309−14

doi: 10.1104/pp.59.2.309
[36]

Beffa R, Martin HV, Pilet PE. 1990. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots. Plant Physiology 94:485−91

doi: 10.1104/pp.94.2.485
[37]

Pine L, Hoffman PS, Malcolm GB, Benson RF, Keen MG. 1984. Determination of catalase, peroxidase, and superoxide dismutase within the genus Legionella. Journal of Clinical Microbiology 20:421−29

doi: 10.1128/jcm.20.3.421-429.1984
[38]

Mishra NP, Mishra RK, Singhal GS. 1993. Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiology 102:903−10

doi: 10.1104/pp.102.3.903
[39]

Verma S, Mishra SN. 2005. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxdative defense system. Journal of Plant Physiology 162:669−77

doi: 10.1016/j.jplph.2004.08.008
[40]

Munns R, Schachtman DP, Condon AG. 1995. The significance of a two-phase growth response to salinity in wheat and barley. Australian Journal of Plant Physiology 22:561−69

doi: 10.1071/pp9950561
[41]

García-Abellan JO, Egea I, Pineda B, Sanchez-Bel P, Belver A, et al. 2014. Heterologous expression of the yeast HAL5 gene in tomato enhances salt tolerance by reducing shoot Na+ accumulation in the long term. Physiologia Plantarum 152:700−13

doi: 10.1111/ppl.12217
[42]

Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK. 2006. Antioxidative response mechanisms in halophytes: their role in stress defence. Journal of Genetics 85:237−54

doi: 10.1007/BF02935340
[43]

Wang Y, Zhang W, Li K, Sun F, Han C, et al. 2008. Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana. Journal of Plant Research 121:87−96

doi: 10.1007/s10265-007-0123-y
[44]

Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012:217037

doi: 10.1155/2012/217037
[45]

You J, Chan Z. 2015. ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science 6:1092

doi: 10.3389/fpls.2015.01092
[46]

Shabala S, Cuin TA. 2008. Potassium transport and plant salt tolerance. Physiologia Plantarum 133:651−69

doi: 10.1111/j.1399-3054.2007.01008.x
[47]

Cramer GR, Läuchli A, Polito VS. 1985. Displacement of Ca2+ by Na+ from the plasmalemma of root cells: A Primary response to salt stress? Plant Physiology 79:207−11

doi: 10.1104/pp.79.1.207
[48]

Rawyler A, Arpagaus S, Braendle R. 2002. Impact of oxygen stress and energy availability on membrane stability of plant cells. Annals of Botany 90:499−507

doi: 10.1093/aob/mcf126
[49]

Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. 2012. Oxidative stress and antioxidant defense. World Allergy Organization Journal 5:9−19

doi: 10.1097/WOX.0b013e3182439613
[50]

Cramer GR, Lynch J, Läuchli A, Epstein E. 1987. Influx of Na+, K+, and Ca2+ into roots of salt-stressed cotton seedlings: Effects of supplemental Ca2+. Plant Physiology 83:510−16

doi: 10.1104/pp.83.3.510
[51]

Azaizeh H, Steudle E. 1991. Effects of salinity on water transport of excised maize (Zea mays L.) roots. Plant Physiology 97:1136−45

doi: 10.1104/pp.97.3.1136
[52]

Lynch J, Läuchli A. 1988. Salinity affects intracellular calcium in corn root protoplasts. Plant Physiology 87:351−56

doi: 10.1104/pp.87.2.351
[53]

Gilliham M, Dayod M, Hocking BJ, Xu B, Conn SJ, et al. 2011. Calcium delivery and storage in plant leaves: exploring the link with water flow. Journal of Experimental Botany 62:2233−50

doi: 10.1093/jxb/err111