[1]

Boavida LC, McCormick S. 2007. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. The Plant Journal 52:570−82

doi: 10.1111/j.1365-313X.2007.03248.x
[2]

Hirsche J, García Fernández JM, Stabentheiner E, Großkinsky DK, Roitsch T. 2017. Differential Effects of Carbohydrates on Arabidopsis Pollen Germination. Plant and Cell Physiology 58:691−701

doi: 10.1093/pcp/pcx020
[3]

Chen CYH, Zheng WG, Cheung AY, Wu HM. 2013. Pollen germination activates the apical membrane-located RAC/ROP GTPase switch. Molecular Plant 6:1358−61

doi: 10.1093/mp/sst074
[4]

Johnson SA, McCormick S. 2001. Pollen germinates precociously in the anthers of raring-to-go, an Arabidopsis gametophytic mutant. Plant Physiology 126:685−95

doi: 10.1104/pp.126.2.685
[5]

Hashida SN, Takahashi H, Takahara K, Kawai-Yamada M, Kitazaki K, et al. 2013. NAD+ accumulation during pollen maturation in Arabidopsis regulating onset of germination. Molecular Plant 6:216−25

doi: 10.1093/mp/sss071
[6]

Wang Y, Chu YJ, Xue HW. 2012. Inositol polyphosphate 5-phosphatase-controlled Ins(1,4,5)P3/Ca2+ is crucial for maintaining pollen dormancy and regulating early germination of pollen. Development 139:2221−33

doi: 10.1242/dev.081224
[7]

Miao Y, Cao J, Huang L, Yu Y, Lin S. 2021. FLA14 is required for pollen development and preventing premature pollen germination under high humidity in Arabidopsis. BMC Plant Biology 21:254

doi: 10.1186/s12870-021-03038-x
[8]

Ju Y, Guo L, Cai Q, Ma F, Zhu QY, et al. 2016. Arabidopsis JINGUBANG Is a Negative Regulator of Pollen Germination That Prevents Pollination in Moist Environments. The Plant Cell 28:2131−46

doi: 10.1105/tpc.16.00401
[9]

Taylor LP, Hepler PK. 1997. Pollen germination and tube growth. Annual Review of Plant Physiology and Plant Molecular Biology 48:461−91

doi: 10.1146/annurev.arplant.48.1.461
[10]

Qin Y, Yang Z. 2011. Rapid tip growth: insights from pollen tubes. Seminars in Cell & Developmental Biology 22:816−24

doi: 10.1016/j.semcdb.2011.06.004
[11]

Yang Z, Fu Y. 2007. ROP/RAC GTPase signaling. Current Opinion in Plant Biology 10:490−94

doi: 10.1016/j.pbi.2007.07.005
[12]

Cherfils J, Zeghouf M. 2013. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiological Reviews 93:269−309

doi: 10.1152/physrev.00003.2012
[13]

Tang W, Lin W, Zhou X, Guo J, Dang X, et al. 2022. Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Current Biology 32:508−17.E3

doi: 10.1016/j.cub.2021.11.031
[14]

Xu Y, Cai W, Chen X, Chen M, Liang W. 2022. A small Rho GTPase OsRacB is required for pollen germination in rice. Development, Growth & Differentiation 64:88−97

doi: 10.1111/dgd.12752
[15]

Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, et al. 2002. The heterotrimeric G protein α subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proceedings of the National Academy of Sciences of the United States of America 99:13307−12

doi: 10.1073/pnas.192244099
[16]

Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J. 2002. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296:2026−28

doi: 10.1126/science.1071505
[17]

Hwang JU, Vernoud V, Szumlanski A, Nielsen E, Yang Z. 2008. A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Current Biology 18:1907−16

doi: 10.1016/j.cub.2008.11.057
[18]

Li H, Luo N, Wang W, Liu Z, Chen J, et al. 2018. The REN4 rheostat dynamically coordinates the apical and lateral domains of Arabidopsis pollen tubes. Nature Communications 9:2573

doi: 10.1038/s41467-018-04838-w
[19]

Ossowski S, Schwab R, Weigel D. 2008. Gene silencing in plants using artificial microRNAs and other small RNAs. The Plant Journal 53:674−90

doi: 10.1111/j.1365-313X.2007.03328.x
[20]

Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, et al. 2010. Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. The Plant Cell 22:173−90

doi: 10.1105/tpc.109.070326
[21]

Gu Y, Vernoud V, Fu Y, Yang Z. 2003. ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. Journal of Experimental Botany 54:93−101

doi: 10.1093/jxb/erg035
[22]

Luo N, Yan A, Liu G, Guo J, Rong D, et al. 2017. Exocytosis-coordinated mechanisms for tip growth underlie pollen tube growth guidance. Nature Communications 8:1687

doi: 10.1038/s41467-017-01452-0
[23]

Yang Z. 2002. Small GTPases: versatile signaling switches in plants. The Plant Cell 14:S375−S388

doi: 10.1105/tpc.001065
[24]

Xiang X, Zhang S, Li E, Shi XL, Zhi JY, et al. 2023. RHO OF PLANT proteins are essential for pollen germination in Arabidopsis. Plant Physiology 193:140−55

doi: 10.1093/plphys/kiad196
[25]

Chen CYH, Cheung AY, Wu HM. 2003. Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. The Plant Cell 15:237−49

doi: 10.1105/tpc.007153
[26]

Gu Y, Fu Y, Dowd P, Li S, Vernoud V, et al. 2005. A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. The Journal of Cell Biology 169:127−38

doi: 10.1083/jcb.200409140
[27]

Gu Y, Li S, Lord EM, Yang Z. 2006. Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. The Plant Cell 18:366−81

doi: 10.1105/tpc.105.036434
[28]

Klahre U, Becker C, Schmitt AC, Kost B. 2006. Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. The Plant Journal 46:1018−31

doi: 10.1111/j.1365-313X.2006.02757.x
[29]

Klahre U, Kost B. 2006. Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially restricts signaling of RAC/Rop to the apex of pollen tubes. The Plant Cell 18:3033−46

doi: 10.1105/tpc.106.045336
[30]

Lee YJ, Szumlanski A, Nielsen E, Yang Z. 2008. Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. The Journal of Cell Biology 181:1155−68

doi: 10.1083/jcb.200801086
[31]

Potocký M, Pejchar P, Gutkowska M, Jiménez-Quesada MJ, Potocká A, et al. 2012. NADPH oxidase activity in pollen tubes is affected by calcium ions, signaling phospholipids and Rac/Rop GTPases. Journal of Plant Physiology 169:1654−63

doi: 10.1016/j.jplph.2012.05.014
[32]

Zhao LN, Shen LK, Zhang WZ, Zhang W, Wang Y, et al. 2013. Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes. The Plant Cell 25:649−61

doi: 10.1105/tpc.112.103184
[33]

Feng QN, Kang H, Song SJ, Ge FR, Zhang YL, et al. 2016. Arabidopsis RhoGDIs are critical for cellular homeostasis of pollen tubes. Plant Physiology 170:841−56

doi: 10.1104/pp.15.01600
[34]

Li E, Cui Y, Ge FR, Chai S, Zhang WT, et al. 2018. AGC1.5 kinase phosphorylates RopGEFs to control pollen tube growth. Molecular Plant 11:1198−209

doi: 10.1016/j.molp.2018.07.004
[35]

Hwang JU, Wu G, Yan A, Lee YJ, Grierson CS, Yang Z. 2010. Pollen-tube tip growth requires a balance of lateral propagation and global inhibition of Rho-family GTPase activity. Journal of Cell Science 123:340−50

doi: 10.1242/jcs.039180
[36]

Zhou L, Lan W, Jiang Y, Fang W, Luan S. 2014. A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth. Molecular Plant 7:369−76

doi: 10.1093/mp/sst125