[1]
|
Boavida LC, McCormick S. 2007. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. The Plant Journal 52:570−82 doi: 10.1111/j.1365-313X.2007.03248.x
CrossRef Google Scholar
|
[2]
|
Hirsche J, García Fernández JM, Stabentheiner E, Großkinsky DK, Roitsch T. 2017. Differential Effects of Carbohydrates on Arabidopsis Pollen Germination. Plant and Cell Physiology 58:691−701 doi: 10.1093/pcp/pcx020
CrossRef Google Scholar
|
[3]
|
Chen CYH, Zheng WG, Cheung AY, Wu HM. 2013. Pollen germination activates the apical membrane-located RAC/ROP GTPase switch. Molecular Plant 6:1358−61 doi: 10.1093/mp/sst074
CrossRef Google Scholar
|
[4]
|
Johnson SA, McCormick S. 2001. Pollen germinates precociously in the anthers of raring-to-go, an Arabidopsis gametophytic mutant. Plant Physiology 126:685−95 doi: 10.1104/pp.126.2.685
CrossRef Google Scholar
|
[5]
|
Hashida SN, Takahashi H, Takahara K, Kawai-Yamada M, Kitazaki K, et al. 2013. NAD+ accumulation during pollen maturation in Arabidopsis regulating onset of germination. Molecular Plant 6:216−25 doi: 10.1093/mp/sss071
CrossRef Google Scholar
|
[6]
|
Wang Y, Chu YJ, Xue HW. 2012. Inositol polyphosphate 5-phosphatase-controlled Ins(1,4,5)P3/Ca2+ is crucial for maintaining pollen dormancy and regulating early germination of pollen. Development 139:2221−33 doi: 10.1242/dev.081224
CrossRef Google Scholar
|
[7]
|
Miao Y, Cao J, Huang L, Yu Y, Lin S. 2021. FLA14 is required for pollen development and preventing premature pollen germination under high humidity in Arabidopsis. BMC Plant Biology 21:254 doi: 10.1186/s12870-021-03038-x
CrossRef Google Scholar
|
[8]
|
Ju Y, Guo L, Cai Q, Ma F, Zhu QY, et al. 2016. Arabidopsis JINGUBANG Is a Negative Regulator of Pollen Germination That Prevents Pollination in Moist Environments. The Plant Cell 28:2131−46 doi: 10.1105/tpc.16.00401
CrossRef Google Scholar
|
[9]
|
Taylor LP, Hepler PK. 1997. Pollen germination and tube growth. Annual Review of Plant Physiology and Plant Molecular Biology 48:461−91 doi: 10.1146/annurev.arplant.48.1.461
CrossRef Google Scholar
|
[10]
|
Qin Y, Yang Z. 2011. Rapid tip growth: insights from pollen tubes. Seminars in Cell & Developmental Biology 22:816−24 doi: 10.1016/j.semcdb.2011.06.004
CrossRef Google Scholar
|
[11]
|
Yang Z, Fu Y. 2007. ROP/RAC GTPase signaling. Current Opinion in Plant Biology 10:490−94 doi: 10.1016/j.pbi.2007.07.005
CrossRef Google Scholar
|
[12]
|
Cherfils J, Zeghouf M. 2013. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiological Reviews 93:269−309 doi: 10.1152/physrev.00003.2012
CrossRef Google Scholar
|
[13]
|
Tang W, Lin W, Zhou X, Guo J, Dang X, et al. 2022. Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Current Biology 32:508−17.E3 doi: 10.1016/j.cub.2021.11.031
CrossRef Google Scholar
|
[14]
|
Xu Y, Cai W, Chen X, Chen M, Liang W. 2022. A small Rho GTPase OsRacB is required for pollen germination in rice. Development, Growth & Differentiation 64:88−97 doi: 10.1111/dgd.12752
CrossRef Google Scholar
|
[15]
|
Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, et al. 2002. The heterotrimeric G protein α subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proceedings of the National Academy of Sciences of the United States of America 99:13307−12 doi: 10.1073/pnas.192244099
CrossRef Google Scholar
|
[16]
|
Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J. 2002. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296:2026−28 doi: 10.1126/science.1071505
CrossRef Google Scholar
|
[17]
|
Hwang JU, Vernoud V, Szumlanski A, Nielsen E, Yang Z. 2008. A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Current Biology 18:1907−16 doi: 10.1016/j.cub.2008.11.057
CrossRef Google Scholar
|
[18]
|
Li H, Luo N, Wang W, Liu Z, Chen J, et al. 2018. The REN4 rheostat dynamically coordinates the apical and lateral domains of Arabidopsis pollen tubes. Nature Communications 9:2573 doi: 10.1038/s41467-018-04838-w
CrossRef Google Scholar
|
[19]
|
Ossowski S, Schwab R, Weigel D. 2008. Gene silencing in plants using artificial microRNAs and other small RNAs. The Plant Journal 53:674−90 doi: 10.1111/j.1365-313X.2007.03328.x
CrossRef Google Scholar
|
[20]
|
Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, et al. 2010. Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. The Plant Cell 22:173−90 doi: 10.1105/tpc.109.070326
CrossRef Google Scholar
|
[21]
|
Gu Y, Vernoud V, Fu Y, Yang Z. 2003. ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. Journal of Experimental Botany 54:93−101 doi: 10.1093/jxb/erg035
CrossRef Google Scholar
|
[22]
|
Luo N, Yan A, Liu G, Guo J, Rong D, et al. 2017. Exocytosis-coordinated mechanisms for tip growth underlie pollen tube growth guidance. Nature Communications 8:1687 doi: 10.1038/s41467-017-01452-0
CrossRef Google Scholar
|
[23]
|
Yang Z. 2002. Small GTPases: versatile signaling switches in plants. The Plant Cell 14:S375−S388 doi: 10.1105/tpc.001065
CrossRef Google Scholar
|
[24]
|
Xiang X, Zhang S, Li E, Shi XL, Zhi JY, et al. 2023. RHO OF PLANT proteins are essential for pollen germination in Arabidopsis. Plant Physiology 193:140−55 doi: 10.1093/plphys/kiad196
CrossRef Google Scholar
|
[25]
|
Chen CYH, Cheung AY, Wu HM. 2003. Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. The Plant Cell 15:237−49 doi: 10.1105/tpc.007153
CrossRef Google Scholar
|
[26]
|
Gu Y, Fu Y, Dowd P, Li S, Vernoud V, et al. 2005. A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. The Journal of Cell Biology 169:127−38 doi: 10.1083/jcb.200409140
CrossRef Google Scholar
|
[27]
|
Gu Y, Li S, Lord EM, Yang Z. 2006. Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. The Plant Cell 18:366−81 doi: 10.1105/tpc.105.036434
CrossRef Google Scholar
|
[28]
|
Klahre U, Becker C, Schmitt AC, Kost B. 2006. Nt-RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. The Plant Journal 46:1018−31 doi: 10.1111/j.1365-313X.2006.02757.x
CrossRef Google Scholar
|
[29]
|
Klahre U, Kost B. 2006. Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially restricts signaling of RAC/Rop to the apex of pollen tubes. The Plant Cell 18:3033−46 doi: 10.1105/tpc.106.045336
CrossRef Google Scholar
|
[30]
|
Lee YJ, Szumlanski A, Nielsen E, Yang Z. 2008. Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. The Journal of Cell Biology 181:1155−68 doi: 10.1083/jcb.200801086
CrossRef Google Scholar
|
[31]
|
Potocký M, Pejchar P, Gutkowska M, Jiménez-Quesada MJ, Potocká A, et al. 2012. NADPH oxidase activity in pollen tubes is affected by calcium ions, signaling phospholipids and Rac/Rop GTPases. Journal of Plant Physiology 169:1654−63 doi: 10.1016/j.jplph.2012.05.014
CrossRef Google Scholar
|
[32]
|
Zhao LN, Shen LK, Zhang WZ, Zhang W, Wang Y, et al. 2013. Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes. The Plant Cell 25:649−61 doi: 10.1105/tpc.112.103184
CrossRef Google Scholar
|
[33]
|
Feng QN, Kang H, Song SJ, Ge FR, Zhang YL, et al. 2016. Arabidopsis RhoGDIs are critical for cellular homeostasis of pollen tubes. Plant Physiology 170:841−56 doi: 10.1104/pp.15.01600
CrossRef Google Scholar
|
[34]
|
Li E, Cui Y, Ge FR, Chai S, Zhang WT, et al. 2018. AGC1.5 kinase phosphorylates RopGEFs to control pollen tube growth. Molecular Plant 11:1198−209 doi: 10.1016/j.molp.2018.07.004
CrossRef Google Scholar
|
[35]
|
Hwang JU, Wu G, Yan A, Lee YJ, Grierson CS, Yang Z. 2010. Pollen-tube tip growth requires a balance of lateral propagation and global inhibition of Rho-family GTPase activity. Journal of Cell Science 123:340−50 doi: 10.1242/jcs.039180
CrossRef Google Scholar
|
[36]
|
Zhou L, Lan W, Jiang Y, Fang W, Luan S. 2014. A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth. Molecular Plant 7:369−76 doi: 10.1093/mp/sst125
CrossRef Google Scholar
|