[1]

Jones OR, Scheuerlein A, Salguero-Gómez R, Camarda CG, Schaible R, et al. 2014. Diversity of ageing across the tree of life. Nature 505:169−73

doi: 10.1038/nature12789
[2]

Makrantonaki E, Pfeifer GP, Zouboulis CC. 2016. Intrinsic factors, genes, and skin aging. Der Hautarzt 67:103−06

doi: 10.1007/s00105-015-3746-2
[3]

Stoessl AJ. 1999. Etiology of Parkinson's disease. Canadian Journal of Neurological Sciences 26(2):S5−S12

doi: 10.1017/s0317167100000032
[4]

Dato S, Bellizzi D, Rose G, Passarino G. 2016. The impact of nutrients on the aging rate: A complex interaction of demographic, environmental and genetic factors. Mechanisms of Ageing and Development 154:49−61

doi: 10.1016/j.mad.2016.02.005
[5]

Di Ciaula A, Portincasa P. 2020. The environment as a determinant of successful aging or frailty. Mechanisms of Ageing and Development 188:111244

doi: 10.1016/j.mad.2020.111244
[6]

López-Otín C, Blasco MA, Partridge L, Serrano M, et al. 2013. The hallmarks of aging. Cell 153:1194−217

doi: 10.1016/j.cell.2013.05.039
[7]

Sadigh-Eteghad S, Majdi A, McCann SK, Mahmoudi J, Vafaee MS, Macleod MR. 2017. D-galactose-induced brain ageing model: A Systematic Review and Meta-analysis on Cognitive Outcomes and Oxidative Stress Indices. PLoS One 12:e0184122

doi: 10.1371/journal.pone.0184122
[8]

Yu XJ, Zhao W, Li YJ, Li FX, Liu ZJ, et al. 2017. Neurotoxicity comparison of two types of local anaesthetics: Amide-bupivacaine versus Ester-procaine. Scientific Reports 7:45316

doi: 10.1038/srep45316
[9]

Prauchner CA. 2017. Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy. Burns 43:471−85

doi: 10.1016/j.burns.2016.09.023
[10]

Grune T. 2002. Oxidants and antioxidative defense. Human & Experimental Toxicology 21:61−62

doi: 10.1191/0960327102ht210oa
[11]

Li TSC, Mazza G, Cottrell A, Gao L. 1996. Ginsenosides in roots and leaves of American ginseng. Journal of Agricultural and Food Chemistry 44:717−20

doi: 10.1021/jf950309f
[12]

Kritsilis M, Rizou SV, Koutsoudaki PN, Evangelou K, Gorgoulis VG, et al. 2018. Ageing, cellular senescence and neurodegenerative disease. International Journal of Molecular Sciences 19:2937

doi: 10.3390/ijms19102937
[13]

Khavkin J, Ellis DAF. 2011. Aging skin: histology, physiology, and pathology. Facial Plastic Surgery Clinics of North America 19:229−34

doi: 10.1016/j.fsc.2011.04.003
[14]

Dominguez LJ, Barbagallo M. 2016. The biology of the metabolic syndrome and aging. Current Opinion in Clinical Nutrition & Metabolic Care 19(1):5−11

doi: 10.1097/MCO.0000000000000243
[15]

Krutmann J, Schikowski T, Morita A, Berneburg M. 2021. Environmentally-Induced (Extrinsic) Skin Aging: Exposomal Factors and Underlying Mechanisms. Journal of Investigative Dermatology 141:1096−103

doi: 10.1016/j.jid.2020.12.011
[16]

Hajjar RR, Atli T, Al-Mandhari Z, Oudrhiri M, Balducci L, et al. 2013. Prevalence of aging population in the Middle East and its implications on cancer incidence and care. Annals of Oncology 24:VII11−VII24

doi: 10.1093/annonc/mdt268
[17]

Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, et al. 2015. The Global Burden of Cancer 2013. JAMA Oncology 1:505−27

doi: 10.1001/jamaoncol.2015.0735
[18]

Tang D, Tao S, Chen Z, Koliesnik IO, Calmes PG, et al. 2016. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging. Journal of Experimental Medicine 213:535−53

doi: 10.1084/jem.20151100
[19]

Longo VD, Anderson RM. 2022. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 185:1455−70

doi: 10.1016/j.cell.2022.04.002
[20]

Park DS, Lee SH, Choi YJ, Bae DK, Yang YH, et al. 2011. Improving effect of silk peptides on the cognitive function of rats with aging brain facilitated by D-galactose. Biomolecules and Therapeutics 19:224−30

doi: 10.4062/biomolther.2011.19.2.224
[21]

Zhou Y, Xu Q, Dong Y, Zhu S, Song S, et al. 2017. Supplementation of mussel peptides reduces aging phenotype, lipid deposition and oxidative stress in D-galactose-induce aging mice. The Journal of Nutrition, Health & Aging 21:1314−20

doi: 10.1007/s12603-016-0862-3
[22]

Song H, Zhang S, Zhang L, Li B. 2017. Effect of orally administered collagen peptides from bovine bone on skin aging in chronologically aged mice. Nutrients 9:1209

doi: 10.3390/nu9111209
[23]

Lee HJ, Jang HL, Ahn DK, Kim HJ, Jeon HY, et al. 2019. Orally administered collagen peptide protects against UVB-induced skin aging through the absorption of dipeptide forms, Gly-Pro and Pro-Hyp. Bioscience, Biotechnology, and Biochemistry 83:1146−56

doi: 10.1080/09168451.2019.1580559
[24]

Cao H, Luo Q, Wang H, Liu Z, Li G, et al. 2019. Retracted Article: Structural characterization of peptides from Locusta migratoria manilensis (Meyen, 1835) and anti-aging effect in Caenorhabditis elegans. RSC Advances 9:9289−300

doi: 10.1039/C9RA00089E
[25]

Mistry K, van der Steen B, Clifford T, van Holthoon F, Kleinnijenhuis A, et al. 2021. Potentiating cutaneous wound healing in young and aged skin with nutraceutical collagen peptides. Clinical and Experimental Dermatology 46:109−17

doi: 10.1111/ced.14392
[26]

Yu XC, Li Z, Liu XR, Hu JN, Liu R, et al. 2021. The antioxidant effects of whey protein peptide on learning and memory improvement in aging mice models. Nutrients 13:2100

doi: 10.3390/nu13062100
[27]

Pei X, Yang R, Zhang Z, Gao L, Wang J, et al. 2010. Marine collagen peptide isolated from Chum Salmon (Oncorhynchus keta) skin facilitates learning and memory in aged C57BL/6J mice. Food Chemistry 118:333−40

doi: 10.1016/j.foodchem.2009.04.120
[28]

De Simone C, Ferranti P, Picariello G, Scognamiglio I, Dicitore A, et al. 2011. Peptides from water buffalo cheese whey induced senescence cell death via ceramide secretion in human colon adenocarcinoma cell line. Molecular Nutrition & Food Research 55:229−38

doi: 10.1002/mnfr.201000074
[29]

Qiu W, Chen X, Tian Y, Wu D, Du M, et al. 2020. Protection against oxidative stress and anti-aging effect in Drosophila of royal jelly-collagen peptide. Food and Chemical Toxicology 135:110881

doi: 10.1016/j.fct.2019.110881
[30]

Wu YH, Liu EQ, Zhang JP, Chen SL, Li Y, et al. 2014. In vivo Antioxidant Activity of Black Soybean Peptide in Aging Mice Caused by D-galactose. Applied Mechanics and Materials 618:421−25

doi: 10.4028/www.scientific.net/AMM.618.421
[31]

Chiang WD, Huang CY, Paul CR, Lee ZY, Lin WT. 2016. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats. Food & Nutrition Research 60:31417

doi: 10.3402/fnr.v60.31417
[32]

Wang Q, Huang Y, Qin C, Liang M, Mao X, et al. 2016. Bioactive peptides from Angelica sinensis protein hydrolyzate delay senescence in Caenorhabditis elegans through antioxidant activities. Oxidative Medicine and Cellular Longevity 2016:8956981

doi: 10.1155/2016/8956981
[33]

Yu T, Guo J, Zhu S, Zhang X, Zhu ZZ, et al. 2020. Protective effects of selenium-enriched peptides from Cardamine violifolia on D-galactose-induced brain aging by alleviating oxidative stress, neuroinflammation, and neuron apoptosis. Journal of Functional Foods 75:104277

doi: 10.1016/j.jff.2020.104277
[34]

Wang Y, Cui X, Lin Q, Cai J, Tang L, et al. 2020. Active peptide KF-8 from rice bran attenuates oxidative stress in a mouse model of aging induced by D-galactose. Journal of Agricultural and Food Chemistry 68:12271−83

doi: 10.1021/acs.jafc.0c04358
[35]

Aguilar-Toalá JE, Liceaga AM. 2020. Identification of chia seed (Salvia hispanica L.) peptides with enzyme inhibition activity towards skin-aging enzymes. Amino Acids 52:1149−59

doi: 10.1007/s00726-020-02879-4
[36]

Amakye WK, Hou C, Xie L, Lin X, Gou N, et al. 2021. Bioactive anti-aging agents and the identification of new anti-oxidant soybean peptides. Food Bioscience 42:101194

doi: 10.1016/j.fbio.2021.101194
[37]

Kennedy K, Cal R, Casey R, Lopez C, Adelfio A, et al. 2020. The anti-ageing effects of a natural peptide discovered by artificial intelligence. International Journal of Cosmetic Science 42:388−98

doi: 10.1111/ics.12635
[38]

Tito A, Barbulova A, Zappelli C, Leone M, Ruvo M, et al. 2019. The growth differentiation factor 11 is involved in skin fibroblast ageing and is induced by a preparation of peptides and sugars derived from plant cell cultures. Molecular Biotechnology 61:209−20

doi: 10.1007/s12033-019-00154-w
[39]

Li L, Ng TB, Song M, Yuan F, Liu ZK, et al. 2007. A polysaccharide-peptide complex from abalone mushroom (Pleurotus abalonus) fruiting bodies increases activities and gene expression of antioxidant enzymes and reduces lipid peroxidation in senescence-accelerated mice. Applied Microbiology and Biotechnology 75:863−69

doi: 10.1007/s00253-007-0865-4
[40]

Oh JH, Kim EY, Nam TJ. 2018. Phycoerythrin-derived tryptic peptide of a red alga Pyropia yezoensis attenuates glutamate-induced ER stress and neuronal senescence in primary rat hippocampal neurons. Molecular Nutrition & Food Research 62:1700469

doi: 10.1002/mnfr.201700469
[41]

Ishiguro S, Shinada T, Wu Z, Karimazawa M, Uchidate M, et al. 2021. A novel cyclic peptide (Naturido) modulates glia-neuron interactions in vitro and reverses ageing-related deficits in senescence-accelerated mice. PLoS One 16:e0245235

doi: 10.1371/journal.pone.0245235
[42]

Li N, Lv S, Ma Y, Liu N, Wang S, et al. 2020. In vitro antioxidant and anti-aging properties of swim bladder peptides from Atlantic cod (Gadus morhua). International Journal of Food Properties 23:1416−29

doi: 10.1080/10942912.2020.1807565
[43]

Chen S, Yang Q, Chen X, Tian Y, Liu Z, Wang S. 2020. Bioactive peptides derived from crimson snapper and invivo anti-aging effects on fat diet-induced high fat Drosophila melanogaster. Food Function 11:524−33

doi: 10.1039/C9FO01414D
[44]

Udenigwe CC, Aluko RE. 2011. Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. International Journal of Molecular Sciences 12:3148−61

doi: 10.3390/ijms12053148
[45]

Toldrá F, Reig M, Aristoy MC, Mora L. 2017. Generation of bioactive peptides during food processing. Food Chemistry 267:395−404

doi: 10.1016/j.foodchem.2017.06.119
[46]

Clemente A. 2000. Enzymatic protein hydrolysates in human nutrition. Trends in Food Science & Technology 11:254−62

doi: 10.1016/S0924-2244(01)00007-3
[47]

Guo K, Su L, Wang Y, Liu H, Lin J, et al. 2020. Antioxidant and anti-aging effects of a sea cucumber protein hydrolyzate and bioinformatic characterization of its composing peptides. Food Function 11:5004−16

doi: 10.1039/D0FO00560F
[48]

Lin L, Zhu Q, Zheng L, Zhao M, Fan J, et al. 2020. Preparation of sea cucumber (Stichopus variegates) peptide fraction with desired organoleptic property and its anti-aging activity in fruit flies and D-galactose-induced aging mice. Journal of Functional Foods 69:103954

doi: 10.1016/j.jff.2020.103954
[49]

Wang X, Yu H, Xing R, Li P. 2017. Characterization, preparation, and purification of marine bioactive peptides. BioMed Research International 2017:9746720

doi: 10.1155/2017/9746720
[50]

Kristinsson HG, Rasco BA. 2000. Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition 40:43−81

doi: 10.1080/10408690091189266
[51]

Savijoki K, Ingmer H, Varmanen P. 2006. Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology 71:394−406

doi: 10.1007/s00253-006-0427-1
[52]

Chai KF, Voo AYH, Chen WN. 2020. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Comprehensive Reviews in Food Science and Food Safety 19:3825−85

doi: 10.1111/1541-4337.12651
[53]

Popa I, Abdul-Malak N, Portoukalian J. 2010. The weak rate of sphingolipid biosynthesis shown by basal keratinocytes isolated from aged vs. young donors is fully rejuvenated after treatment with peptides of a potato hydrolysate. International Journal of Cosmetic Science 32:225−32

doi: 10.1111/j.1468-2494.2009.00571.x
[54]

Ding Q, Wu RA, Yin L, Zhang W, He R, et al. 2019. Antioxidation and memory protection effects of solid-state-fermented rapeseed meal peptides on D-galactose-induced memory impairment in aging-mice. Journal of Food Process Engineering 42:e13145

doi: 10.1111/jfpe.13145
[55]

Murtaza MA, Irfan S, Hafiz I, Ranjha MMAN, Rahaman A, et al. 2022. Conventional and Novel Technologies in the Production of Dairy Bioactive Peptides. Frontiers in Nutrition 9:780151

doi: 10.3389/fnut.2022.780151
[56]

Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, et al. 2019. A Review of the Microbial Production of Bioactive Natural Products and Biologics. Frontiers in Microbiology 10:1404

doi: 10.3389/fmicb.2019.01404
[57]

Romero-Luna HE, Hernández-Mendoza A, González-Córdova AF, Peredo-Lovillo A. 2022. Bioactive peptides produced by engineered probiotics and other food-grade bacteria: A review. Food Chemistry: X 13:100196

doi: 10.1016/j.fochx.2021.100196
[58]

Zhao X, Zhang X, Liu D. 2021. Collagen peptides and the related synthetic peptides: A review on improving skin health. Journal of Functional Foods 86:104680

doi: 10.1016/j.jff.2021.104680
[59]

Campiche R, Jackson E, Laurent G, Roche M, Gougeon S, et al. 2020. Skin filling and firming activity of a hyaluronic acid inducing synthetic tripeptide. International Journal of Peptide Research and Therapeutics 26:181−89

doi: 10.1007/s10989-019-09827-1
[60]

Zhang X, Liu B, Zhang L, Zou H, Cao J, et al. 2010. Recent advances in proteolysis and peptide/protein separation by chromatographic strategies. Science China Chemistry 53:685−94

doi: 10.1007/s11426-010-0135-7
[61]

Liang Y, Lin Q, Huang P, Wang Y, Li J, et al. 2018. Rice bioactive peptide binding with TLR4 to overcome H2O2-induced injury in human umbilical vein endothelial cells through NF-κB signaling. Journal of Agricultural and Food Chemistry 66:440−48

doi: 10.1021/acs.jafc.7b04036
[62]

Zhang Z, Zhu H, Zheng Y, Zhang L, Wang X, et al. 2020. The effects and mechanism of collagen peptide and elastin peptide on skin aging induced by D-galactose combined with ultraviolet radiation. Journal of Photochemistry and Photobiology B: Biology 210:111964

doi: 10.1016/j.jphotobiol.2020.111964
[63]

Franklin TC, Wohleb ES, Zhang Y, Fogaça M, Hare B, et al. 2018. Persistent increase in microglial RAGE contributes to chronic stress–induced priming of depressive-like behavior. Biological Psychiatry 83:50−60

doi: 10.1016/j.biopsych.2017.06.034
[64]

Cho MH, Cho K, Kang HJ, Jeon EY, Kim HS, et al. 2014. Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy 10:1761−75

doi: 10.4161/auto.29647
[65]

Satoh Ji, Kino Y, Asahina N, Takitani M, Miyoshi J, et al. 2016. TMEM119 marks a subset of microglia in the human brain. Neuropathology 36:39−49

doi: 10.1111/neup.12235
[66]

Sacks D, Baxter B, Campbell BVC, Carpenter J, Cognard C, et al. 2018. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. International Journal of Stroke 13:612−32

doi: 10.1016/j.jvir.2017.11.026
[67]

Chataigner M, Mortessagne P, Lucas C, Pallet V, Layé S, et al. 2021. Dietary fish hydrolysate supplementation containing n-3 LC-PUFAs and peptides prevents short-term memory and stress response deficits in aged mice. Brain, Behavior, and Immunity 91:716−30

doi: 10.1016/j.bbi.2020.09.022
[68]

Toricelli M, Pereira AAR, Souza Abrao G, Malerba HN, Maia J, et al. 2021. Mechanisms of neuroplasticity and brain degeneration: strategies for protection during the aging process. Neural Regeneration Research 16:58−67

doi: 10.4103/1673-5374.286952
[69]

Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. 2016. Alzheimer's disease: Targeting the Cholinergic System. Current Neuropharmacology 14:101−15

doi: 10.2174/1570159X13666150716165726
[70]

Shinozaki Y, Nomura M, Iwatsuki K, Moriyama Y, Gachet C, et al. 2014. Microglia trigger astrocyte-mediated neuroprotection via purinergic gliotransmission. Scientific Reports 4:4329

doi: 10.1038/srep04329
[71]

Lynch CC. 2011. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone 48:44−53

doi: 10.1016/j.bone.2010.06.007
[72]

Ma CA, Stinson JR, Zhang Y, Abbott JK, Weinreich MA, et al. 2017. Germline hypomorphic CARD11 mutations in severe atopic disease. Nature Genetics 49:1192−201

doi: 10.1038/ng.3898
[73]

Tigges J, Krutmann J, Fritsche E, Haendeler J, Schaal H, et al. 2014. The hallmarks of fibroblast ageing. Mechanisms of Ageing and Development 138:26−44

doi: 10.1016/j.mad.2014.03.004
[74]

Quirinia A, Viidik A. 1991. The influence of age on the healing of normal and ischemic incisional skin wounds. Mechanisms of Ageing and Development 58:221−32

doi: 10.1016/0047-6374(91)90094-G
[75]

Kimura Y, Sumiyoshi M, Kobayashi T. 2014. Whey peptides prevent chronic ultraviolet B radiation-induced skin aging in melanin-possessing male hairless mice. The Journal of Nutrition 144:27−32

doi: 10.3945/jn.113.180406
[76]

Yashin AI, Jazwinski SM. 2014. Aging and health: a systems biology perspective. Basel: Karger.

[77]

Zhang H, Davies KJA, Forman HJ. 2015. Oxidative stress response and Nrf2 signaling in aging. Free Radical Biology and Medicine 88:314−36

doi: 10.1016/j.freeradbiomed.2015.05.036
[78]

Budd J, Cusi K. 2020. Nonalcoholic fatty liver disease: What does the primary care physician need to know? The American Journal of Medicine 133:536−43

doi: 10.1016/j.amjmed.2020.01.007
[79]

Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, et al. 2004. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40:1387−95

doi: 10.1002/hep.20466
[80]

Zhang T, Duan J, Zhang L, Li Z, Steer CJ, et al. 2019. LXRα promotes hepatosteatosis in part through activation of microRNA-378 transcription and inhibition of Ppargc1β expression. Hepatology 69:1488−503

doi: 10.1002/hep.30301
[81]

Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, et al. 1998. Epidemiology of sarcopenia among the elderly in New Mexico. American journal of epidemiology 147:755−63

doi: 10.1093/oxfordjournals.aje.a009520
[82]

Troen BR. 2003. The biology of aging. The Mount Sinai Journal of Medicine 70:3−22

[83]

Ichinoseki-Sekine N, Kakigi R, Miura S, Naito H. 2015. Whey peptide ingestion suppresses body fat accumulation in senescence-accelerated mouse prone 6 (SAMP6). European Journal of Nutrition 54:551−56

doi: 10.1007/s00394-014-0736-6
[84]

Zhang Z, Zhang R, Qin ZZ, Chen JP, Xu JY, et al. 2018. Effects of Chronic Whey Protein Supplementation on Atherosclerosis in ApoE−/− Mice. Journal of Nutritional Science and Vitaminology 64:143−50

doi: 10.3177/jnsv.64.143
[85]

Do SG, Park JH, Nam H, Kim JB, Lee JY, et al. 2012. Silk fibroin hydrolysate exerts an anti-diabetic effect by increasing pancreatic β cell mass in C57BL/KsJ-db/db mice. Journal of Veterinary Science 13:339−44

doi: 10.4142/jvs.2012.13.4.339
[86]

Han BK, Lee HJ, Lee HS, Suh HJ, Park Y. 2016. Hypoglycaemic effects of functional tri-peptides from silk in differentiated adipocytes and streptozotocin-induced diabetic mice. Journal of the Science of Food and Agriculture 96:116−21

doi: 10.1002/jsfa.7067
[87]

Massa SM, Yang T, Xie Y, Shi J, Bilgen M, et al. 2010. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. The Journal of Clinical Investigation 120:1774−85

doi: 10.1172/JCI41356
[88]

Chao MV. 2003. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nature Reviews Neuroscience 4:299−309

doi: 10.1038/nrn1078
[89]

Huang EJ, Reichardt LF. 2003. Trk receptors: roles in neuronal signal transduction. Annual Review of Biochemistry 72:609−42

doi: 10.1146/annurev.biochem.72.121801.161629
[90]

Huang YWA, Ruiz CR, Eyler ECH, Lin K, Meffert MK. 2012. Dual regulation of miRNA biogenesis generates target specificity in neurotrophin-induced protein synthesis. Cell 148:933−46

doi: 10.1016/j.cell.2012.01.036
[91]

Wagner MJ, Stacey MM, Liu BA, Pawson T. 2013. Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Cold Spring Harbor Perspectives in Biology 5:a008987

doi: 10.1101/cshperspect.a008987
[92]

Klaassen CD, Reisman SA. 2010. Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver. Toxicology and Applied Pharmacology 244:57−65

doi: 10.1016/j.taap.2010.01.013
[93]

Yang F, Li J, Deng H, Wang Y, Lei C, et al. 2019. GSTZ1-1 Deficiency Activates NRF2/IGF1R Axis in HCC via Accumulation of Oncometabolite Succinylacetone. The EMBO Journal 38:e101964

doi: 10.15252/embj.2019101964
[94]

Motohashi H, Yamamoto M. 2004. Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends in Molecular Medicine 10:549−57

doi: 10.1016/j.molmed.2004.09.003
[95]

Woodcock KJ, Kierdorf K, Pouchelon CA, Vivancos V, Dionne MS, Geissmann F. 2015. Macrophage-derived upd3 cytokine causes impaired glucose homeostasis and reduced lifespan in Drosophila fed a lipid-rich diet. Immunity 42:133−44

doi: 10.1016/j.immuni.2014.12.023
[96]

Di Bona D, Accardi G, Virruso C, Candore G, Caruso C. 2014. Association between genetic variations in the insulin/insulin-like growth factor (Igf-1) signaling pathway and longevity: a systematic review and meta-analysis. Current Vascular Pharmacology 12:674−81

doi: 10.2174/1570161111666131218152807
[97]

Lin K, Dorman JB, Rodan A, Kenyon C. 1997. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319−22

doi: 10.1126/science.278.5341.1319
[98]

Zhang X, Yalcin S, Lee DF, Yeh TYJ, Lee SM, et al. 2011. FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nature Cell Biology 13:1092−99

doi: 10.1038/ncb2293
[99]

Xiao R, Zhang B, Dong Y, Gong J, Xu T, et al. 2013. A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152:806−17

doi: 10.1016/j.cell.2013.01.020
[100]

Reddy KC, Dror T, Sowa JN, Panek J, Chen K, et al. 2017. An intracellular pathogen response pathway promotes proteostasis in C. elegans. Current Biology 27:3544−3553.E5

doi: 10.1016/j.cub.2017.10.009
[101]

Hsu AL, Murphy CT, Kenyon C. 2003. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142−45

doi: 10.1126/science.1083701
[102]

Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, et al. 2013. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497:211−16

doi: 10.1038/nature12143
[103]

Orr AW, Hahn C, Blackman BR, Schwartz MA. 2008. p21-activated kinase signaling regulates oxidant-dependent NF-κB activation by flow. Circulation Research 103:671−79

doi: 10.1161/CIRCRESAHA.108.182097
[104]

Sharipo A, Imreh M, Leonchiks A, Imreh S, Masucci MG. 1998. A minimal glycine-alanine repeat prevents the interaction of ubiquitinated IκBα with the proteasome: a new mechanism for selective inhibition of proteolysis. Nature Medicine 4:939−44

doi: 10.1038/nm0898-939
[105]

Wang F, Zhou H, Deng L, Wang L, Chen J, Zhou X. 2020. Serine deficiency exacerbates inflammation and oxidative stress via microbiota-gut-brain axis in D-galactose-induced aging mice. Mediators of Inflammation 2020:5821428

doi: 10.1155/2020/5821428
[106]

Li J, Chen J, Huang P, Cai Z, Zhang N, et al. 2023. The anti-inflammatory mechanism of flaxseed linusorbs on lipopolysaccharide-induced RAW 264.7 macrophages by modulating TLR4/NF-κB/MAPK pathway. Foods 12:2398

doi: 10.3390/foods12122398
[107]

Qin Z, Fisher GJ, Voorhees JJ, Quan T. 2018. Actin cytoskeleton assembly regulates collagen production via TGF-β type II receptor in human skin fibroblasts. Journal of Cellular and Molecular Medicine 22:4085−96

doi: 10.1111/jcmm.13685
[108]

Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, et al. 2005. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15:16R−28r

doi: 10.1093/glycob/cwi053
[109]

Fleming TH, Humpert PM, Nawroth PP, Bierhaus A. 2011. Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process: a mini-review. Gerontology 57:435−43

doi: 10.1159/000322087
[110]

Semba RD, Nicklett EJ, Ferrucci L. 2010. Does accumulation of advanced glycation end products contribute to the aging phenotype? The Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 65A:963−75

doi: 10.1093/gerona/glq074
[111]

Yamamoto Y, Yamamoto H. 2013. RAGE-mediated inflammation, type 2 diabetes, and diabetic vascular complication. Frontiers in Endocrinology 4:105

doi: 10.3389/fendo.2013.00105
[112]

Chandrasekaran K, Hatanpää K, Brady DR, Rapoport SI. 1996. Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer's disease. Experimental Neurology 142:80−88

doi: 10.1006/exnr.1996.0180
[113]

Li XH, Lv BL, Xie JZ, Liu J, Zhou XW, et al. 2012. AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiology of Aging 33:1400−10

doi: 10.1016/j.neurobiolaging.2011.02.003
[114]

Cole SL, Vassar R. 2007. The Alzheimer's disease β-secretase enzyme, BACE1. Molecular Neurodegeneration 2:1−25

doi: 10.1186/1750-1326-2-22
[115]

Saura CA. 2010. Presenilin/γ-secretase and inflammation. Frontiers in Aging Neuroscience 2:16

doi: 10.3389/fnagi.2010.00016
[116]

Chen S, Zhou H, Zhang G, Meng J, Deng K, et al. 2019. Anthocyanins from Lycium ruthenicum Murr. ameliorated D-galactose-induced memory impairment, oxidative stress, and neuroinflammation in adult rats. Journal of Agricultural and Food Chemistry 67:3140−49

doi: 10.1021/acs.jafc.8b06402
[117]

Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, et al. 2021. PI3K/AKT signal pathway: A target of natural products in the prevention and treatment of Alzheimer's disease and Parkinson's disease. Frontiers in Pharmacology 12:648636

doi: 10.3389/fphar.2021.648636
[118]

Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, et al. 2005. Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. Journal of Neurochemistry 93:105−17

doi: 10.1111/j.1471-4159.2004.02949.x
[119]

Johnson SC, Rabinovitch PS, Kaeberlein M. 2013. mTOR is a key modulator of ageing and age-related disease. Nature 493:338−45

doi: 10.1038/nature11861
[120]

Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J, et al. 2014. mTOR inhibition improves immune function in the elderly. Science Translational Medicine 6:268ra179

doi: 10.1126/scitranslmed.3009892
[121]

Huang J, Zhang Y, Bersenev A, O'Brien WT, Tong W, et al. 2009. Pivotal role for glycogen synthase kinase-3 in hematopoietic stem cell homeostasis in mice. The Journal of Clinical Investigation 119:3519−29

doi: 10.1172/JCI40572
[122]

Zhou J, Brüne B. 2006. Cytokines and hormones in the regulation of hypoxia inducible factor-1α (HIF-1α). Cardiovascular & Hematological Agents in Medicinal Chemistry 4:189−97

doi: 10.2174/187152506777698344
[123]

Huang J, Xu Z, Chen H, Lin Y, Wei J, et al. 2022. Shen Qi Wan Ameliorates Learning and Memory Impairment Induced by STZ in AD Rats through PI3K/AKT Pathway. Brain Sciences 12:758

doi: 10.3390/brainsci12060758
[124]

Huang Q, Zhang C, Dong S, Han J, Qu S, et al. 2022. Asafoetida exerts neuroprotective effect on oxidative stress induced apoptosis through PI3K/Akt/GSK3β/Nrf2/HO-1 pathway. Chinese Medicine 17:83

doi: 10.1186/s13020-022-00630-7
[125]

Qiu H, Liu X. 2022. Echinacoside Improves Cognitive Impairment by Inhibiting Aβ Deposition Through the PI3K/AKT/Nrf2/PPARγ Signaling Pathways in APP/PS1 Mice. Molecular Neurobiology 59(8):4987−99

doi: 10.1007/s12035-022-02885-5
[126]

Udenigwe CC, Je JY, Cho YS, Yada RY. 2013. Almond protein hydrolysate fraction modulates the expression of proinflammatory cytokines and enzymes in activated macrophages. Food Function 4:777−83

doi: 10.1039/c3fo30327f
[127]

Hu WS, Ting WJ, Chiang WD, Pai P, Yeh YL, et al. 2015. The heart protection effect of alcalase potato protein hydrolysate is through IGF1R-PI3K-Akt compensatory reactivation in aging rats on high fat diets. International Journal of Molecular Sciences 16:10158−72

doi: 10.3390/ijms160510158
[128]

Oeckinghaus A, Hayden MS, Ghosh S. 2011. Crosstalk in NF-κB signaling pathways. Nature Immunology 12:695−708

doi: 10.1038/ni.2065
[129]

Chang L, Karin M. 2001. Mammalian MAP kinase signalling cascades. Nature 410:37−40

doi: 10.1038/35065000
[130]

Pereira L, Igea A, Canovas B, Dolado I, Nebreda AR. 2013. Inhibition of p38 MAPK sensitizes tumour cells to cisplatin-induced apoptosis mediated by reactive oxygen species and JNK. EMBO Molecular Medicine 5:1759−74

doi: 10.1002/emmm.201302732
[131]

English J, Pearson G, Wilsbacher J, Swantek J, Karandikar M, et al. 1999. New insights into the control of MAP kinase pathways. Experimental Cell Research 253:255−70

doi: 10.1006/excr.1999.4687
[132]

Sun Z, Luo Q, Ye D, Chen W, Chen F. 2012. Role of toll-like receptor 4 on the immune escape of human oral squamous cell carcinoma and resistance of cisplatin-induced apoptosis. Molecular Cancer 11:33

doi: 10.1186/1476-4598-11-33
[133]

Ali T, Badshah H, Kim TH, Kim MO. 2015. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-κB/JNK signaling pathway in aging mouse model. Journal of Pineal Research 58:71−85

doi: 10.1111/jpi.12194
[134]

Ventura JJ, Cogswell P, Flavell RA, Baldwin AS, Davis RJ. 2004. JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes & Development 18:2905−15

doi: 10.1101/gad.1223004
[135]

Kim BJ, Ryu SW, Song BJ. 2006. JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. Journal of Biological Chemistry 281:21256−65

doi: 10.1074/jbc.M510644200
[136]

Stoneman VEA, Bennett MR. 2009. Role of Fas/Fas-L in vascular cell apoptosis. Journal of Cardiovascular Pharmacology 53:100−8

doi: 10.1097/FJC.0b013e318198fe60
[137]

Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima SI, et al. 1991. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66:233−43

doi: 10.1016/0092-8674(91)90614-5
[138]

Waring P, Müllbacher A. 1999. Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunology & Cell Biology 77:312−17

doi: 10.1046/j.1440-1711.1999.00837.x
[139]

Ashkenazi A, Dixit VM. 1999. Apoptosis control by death and decoy receptors. Current Opinion in Cell Biology 11:255−60

doi: 10.1016/S0955-0674(99)80034-9
[140]

Taylor RC, Cullen SP, Martin SJ. 2008. Apoptosis: controlled demolition at the cellular level. Nature reviews Molecular Cell Biology 9:231−41

doi: 10.1038/nrm2312
[141]

Sakaki-Yumoto M, Katsuno Y, Derynck R. 2013. TGF-β family signaling in stem cells. Biochimica et Biophysica Acta (BBA)-General Subjects 1830:2280−96

doi: 10.1016/j.bbagen.2012.08.008
[142]

Oh SP, Yeo CY, Lee Y, Schrewe H, Whitman M, et al. 2002. Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning. Genes & Development 16:2749−54

doi: 10.1101/gad.1021802
[143]

Thomopoulos S, Harwood FL, Silva MJ, Amiel D, Gelberman RH. 2005. Effect of several growth factors on canine flexor tendon fibroblast proliferation and collagen synthesis in vitro. The Journal of Hand Surgery 30:441−47

doi: 10.1016/j.jhsa.2004.12.006
[144]

Cui Z, Zhao X, Amevor FK, Du X, Wang Y, et al. 2022. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Frontiers in Immunology 13:943321

doi: 10.3389/fimmu.2022.943321
[145]

El-Nashar HAS, Adel M, El-Shazly M, Yahia IS, El Sheshtawy HS, et al. 2022. Chemical composition, antiaging activities and molecular docking studies of essential oils from Acca sellowiana (Feijoa). Chemistry & Biodiversity 19(9):e202200272

doi: 10.1002/cbdv.202200272
[146]

Li H, Xu J, Zhang Y, Hong L, He Z, et al. 2022. Astragaloside IV alleviates senescence of vascular smooth muscle cells through activating Parkin-mediated mitophagy. Human Cell 35(6):1684−96

doi: 10.1007/s13577-022-00758-6
[147]

Lintner K, Peschard O. 2000. Biologically active peptides: from a laboratory bench curiosity to a functional skin care product. International Journal of Cosmetic Science 22:207−18

doi: 10.1046/j.1467-2494.2000.00010.x
[148]

Mondon P, Hillion M, Peschard O, Andre N, Marchand T, et al. 2015. Evaluation of dermal extracellular matrix and epidermal-dermal junction modifications using matrix-assisted laser desorption/ionization mass spectrometric imaging,in vivo reflectance confocal microscopy, echography, and histology: effect of age and peptide applications. Journal of Cosmetic Dermatology 14:152−60

doi: 10.1111/jocd.12135