[1]

Ramos-Souza C, Bandoni DH, Bragotto APA, et al. 2023. Risk assessment of azo dyes as food additives: Revision and discussion of data gaps toward their improvement. Comprehensive Reviews in Food Science and Food Safety 22:380−407

doi: 10.1111/1541-4337.13072
[2]

Echegaray N, Guzel N, Kumar M, Guzel M, Hassoun A, et al. 2023. Recent advancements in natural colorants and their application as coloring in food and in intelligent food packaging. Food Chemistry 404:134453

doi: 10.1016/j.foodchem.2022.134453
[3]

Giaconia MA, dos Passos Ramos S, Pereira CF, Lemes AC, De Rosso VV, et al. 2020. Overcoming restrictions of bioactive compounds biological effects in food using nanometer-sized structures. Food Hydrocolloids 107:105939

doi: 10.1016/j.foodhyd.2020.105939
[4]

da Silva Moura M, da Silva Gomes da Costa B, Giaconia MA, de Andrade RR, Braga ARC, et al. 2023. Jaboticaba powders production by freeze-drying: Influence of octenyl succinic anhydride-modified starch concentrations over anthocyanins and physical properties. Journal of Food Process Engineering 46(3):1−14

doi: 10.1111/jfpe.14256
[5]

Guijarro-Fuertes M, Andrade-Cuvi MJ, Bravo-Vasquez J, Ramos-Guerrero L, Vernaza MG. 2019. Andean blueberry (Vaccinium floribundum) bread: Physicochemical properties and bioaccessibility of antioxidants. Food Science and Technology 39:56−62

doi: 10.1590/fst.30317
[6]

Schulz M, Biluca FC, Gonzaga LV, da Silva Campelo Borges G, Vitali L, et al. 2017. Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe edulis Martius) subjected to in vitro gastrointestinal digestion. Food Chemistry 228:447−54

doi: 10.1016/j.foodchem.2017.02.038
[7]

Quatrin A, Rampelotto C, Pauletto R, Maurer LH, Nichelle SM, et al. 2020. Bioaccessibility and catabolism of phenolic compounds from jaboticaba (Myrciaria trunciflora) fruit peel during in vitro gastrointestinal digestion and colonic fermentation. Journal of Functional Foods 65:103714

doi: 10.1016/j.jff.2019.103714
[8]

Braga ARC, Murador DC, de Souza Mesquita LM, de Rosso VV. 2018. Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research. Journal of Food Composition and Analysis 68:31−40

doi: 10.1016/j.jfca.2017.07.031
[9]

Murador DC, de Souza Mesquita LM, Vannuchi N, Braga ARC, de Rosso VV. 2019. Bioavailability and biological effects of bioactive compounds extracted with natural deep eutectic solvents and ionic liquids: advantages over conventional organic solvents. Current Opinion in Food Science 26:25−34

doi: 10.1016/j.cofs.2019.03.002
[10]

Giaconia MA, Ramos SDP, Fratelli C, Assis M, Mazzo TM, et al. 2022. Fermented Jussara: Evaluation of Nanostructure Formation, Bioaccessibility, and Antioxidant Activity. Frontiers in Bioengineering and Biotechnology 10:814466

doi: 10.3389/fbioe.2022.814466
[11]

Fratelli C, Burck M, Amarante MCA, Braga ARC. 2021. Antioxidant potential of nature’s “something blue”: Something new in the marriage of biological activity and extraction methods applied to C-phycocyanin. Trends in Food Science and Technology 107:309−23

doi: 10.1016/j.jpgs.2020.10.043
[12]

Di Maio G, Pittia P, Mazzarino L, Maraschin M, Kuhnen S. 1019. Cow milk enriched with nanoencapsulated phenolic extract of jaboticaba (Plinia peruviana). Journal of Food Science and Technology 56(3):1165−73

doi: 10.1007/s13197-019-03579-y
[13]

Wu SB, Long C, Kennelly EJ. 2013. Phytochemistry and health benefits of jaboticaba, an emerging fruit crop from Brazil. Food Research International 54:148−59

doi: 10.1016/j.foodres.2013.06.021
[14]

Inada KOP, Oliveira AA, Revorêdo TB, Martins ABN, Lacerda ECQ. 2015. Screening of the chemical composition and occurring antioxidants in jabuticaba (Myrciaria jaboticaba) and jussara (Euterpe edulis) fruits and their fractions. Journal of Functional Foods 17:422−33

doi: 10.1016/j.jff.2015.06.002
[15]

Plaza M, Batista ÂG, Cazarin CBB, Sandahl M, Turner C, et al. 2016. Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: A pilot clinical study. Food Chemistry 211:185−97

doi: 10.1016/j.foodchem.2016.04.142
[16]

Sobeh M, ElHawary E, Peixoto H, Labib RM, Handoussa H, et al. 2016. Identification of phenolic secondary metabolites from Schotia brachypetala Sond. (Fabaceae) and demonstration of their antioxidant activities in Caenorhabditis elegans. PeerJ 4:2404

doi: 10.7717/peerj.2404
[17]

Lima EMF, Madalão MCM, dos Santos WC, Bernardes PC, Saraiva SH, et al. 2019. Spray-dried microcapsules of anthocyanin-rich extracts from Euterpe edulis M. as an alternative for maintaining color and bioactive compounds in dairy beverages. Journal of Food Science and Technology 56(9):4147−57

doi: 10.1007/s13197-019-03885-5
[18]

Xu Q, Li B, Wang D, Luo L, Liu G, et al. 2019. Microencapsulation and Stability Analysis of Blueberry Anthocyanins. IOP Conference Series: Earth and Environmental Science 252:052133

doi: 10.1088/1755-1315/252/5/052133
[19]

Ge J, Yue P, Chi J, Liang J, Gao X. 2018. Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocolloids 74:23−31

doi: 10.1016/j.foodhyd.2017.07.029
[20]

Ballesteros LF, Ramirez MJ, Orrego CE, Teixeira JA, Mussatto SI. 2017. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry 237:623−31

doi: 10.1016/j.foodchem.2017.05.142
[21]

Bhosale R, Singhal R. 2006. Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches. Carbohydrate Polymers 66(4):521−27

doi: 10.1016/j.carbpol.2006.04.007
[22]

Cova A, Sandoval AJ, Balsamo V, Müller AJ. 2010. The effect of hydrophobic modifications on the adsorption isotherms of cassava starch. Carbohydrate Polymers 81(3):660−67

doi: 10.1016/j.carbpol.2010.03.028
[23]

Perrechil F, Louzi VC, Alves da Silva Paiva L, Santos Valentin Natal G, Braga MB. 2021. Evaluation of modified starch and rice protein concentrate as wall materials on the microencapsulation of flaxseed oil by freeze-drying. LWT 140:110760

doi: 10.1016/j.lwt.2020.110760
[24]

Braga MB, Veggi PC, Codolo MC, Giaconia MA, Rodrigues CL, et al. 2019. Evaluation of freeze-dried milk-blackberry pulp mixture: Influence of adjuvants over the physical properties of the powder, anthocyanin content and antioxidant activity. Food Research International 125:108557

doi: 10.1016/j.foodres.2019.108557
[25]

Das AB, Goud VV, Das C. 2019. Microencapsulation of anthocyanin extract from purple rice bran using modified rice starch and its effect on rice dough rheology. International Journal of Biological Macromolecules 124:573−81

doi: 10.1016/j.ijbiomac.2018.11.247
[26]

Nhouchi Z, Watuzola R, Pense-Lheritier AM. 2022. A review on octenyl succinic anhydride modified starch-based Pickering-emulsion: Instabilities and ingredients interactions. Journal of Texture Studies 53(5):581−600

doi: 10.1111/jtxs.12663
[27]

Chitchumroonchokchai C, Failla ML. 2017. Bioaccessibility and intestinal cell uptake of astaxanthin from salmon and commercial supplements. Food Research International 99:936−43

doi: 10.1016/j.foodres.2016.10.010
[28]

de Rosso VV, Mercadante AZ. 2007. HPLC–PDA–MS/MS of anthocyanins and carotenoids from dovyalis and tamarillo fruits. Journal of Agricultural and Food Chemistry 55(22):9135−41

doi: 10.1021/jf071316u
[29]

Rodrigues E, Mariutti LRB, Faria AF, Mercadante AZ. 2012. Microcapsules containing antioxidant molecules as scavengers of reactive oxygen and nitrogen species. Food Chemistry 134(2):704−11

doi: 10.1016/j.foodchem.2012.02.163
[30]

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, et al. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26:1231−37

doi: 10.1016/S0891-5849(98)00315-3
[31]

Kosińska-Cagnazzo A, Diering S, Prim D, Andlauer W. 2015. Identification of bioaccessible and uptaken phenolic compounds from strawberry fruits in in vitro digestion/Caco-2 absorption model. Food Chemistry 170:288−94

doi: 10.1016/j.foodchem.2014.08.070
[32]

Jeong SJ, Lee JS, Lee HG. 2020. Nanoencapsulation of synergistic antioxidant fruit and vegetable concentrates and their stability during in vitro digestion. Journal of the Science of Food and Agriculture 100(3):1056−1063

doi: 10.1002/jsfa.10110
[33]

Lila MA, Burton-Freeman B, Grace M, Kalt W. 2016. Unraveling Anthocyanin Bioavailability for Human Health. Annual Review of Food Science and Technology 7(1):375−93

doi: 10.1146/annurev-food-041715-033346
[34]

Muñoz-Fariña O, López-Casanova V, García-Figueroa O, Roman-Benn A, Ah-Hen K. 2023. Bioaccessibility of phenolic compounds in fresh and dehydrated blueberries (Vaccinium corymbosum L.). Food Chemistry Advances 2:100171

doi: 10.1016/j.focha.2022.100171
[35]

Giaconia MA, dos Passos Ramos S, Neves BV, Almeida L, Costa-Lotufo L, et al. 2022. Nanofibers of Jussara Pulp: A tool to prevent the loss of thermal stability and the antioxidant activity of anthocyanins after simulated digestion. Processes 10(11):2343

doi: 10.3390/pr10112343
[36]

Braga ARC, de Souza Mesquita LM, Martins PLG, Habu S, de Rosso VV. 2018. Lactobacillus fermentation of jussara pulp leads to the enzymatic conversion of anthocyanins increasing antioxidant activity. Journal of Food Composition and Analysis 69:162−70

doi: 10.1016/j.jfca.2017.12.030
[37]

Schulz M, da Silva Campelo Borges G, Gonzaga LV, Oliveira Costa AC, Fett R. 2016. Juçara fruit (Euterpe edulis Mart.): Sustainable exploitation of a source of bioactive compounds. Food Research International 89:14−26

doi: 10.1016/j.foodres.2016.07.027
[38]

Ravichandran KS, Silva ES, Moncada M, Perkins-Veazie P, Lila MA, et al. 2023. Spray drying to produce novel phytochemical-rich ingredients from juice and pomace of American elderberry. Food Bioscience 55:102981

doi: 10.1016/j.fbio.2023.102981
[39]

García-Pérez P, Tomas M, Rivera-Pérez A, Patrone V, Giuberti G, et al. 2024. Pectin conformation influences the bioaccessibility of cherry laurel polyphenols and gut microbiota distribution following in vitro gastrointestinal digestion and fermentation. Food Chemistry 430:137054

doi: 10.1016/j.foodchem.2023.137054
[40]

Murador DC, Braga ARC, da Cunha D, De Rosso V. 2018. Alterations in phenolic compound levels and antioxidant activity in response to cooking technique effects: A meta-analytic investigation. Critical Reviews in Food Science and Nutrition 58(2):169−77

doi: 10.1080/10408398.2016.1140121
[41]

Czubaszek A, Czaja A, Sokół-Łętowska A, Kolniak-Ostek J, Kucharska AZ. 2023. Quality of bread enriched with microencapsulated anthocyanin extracts during in vitro simulated digestion. Journal of Cereal Science 113:103724

doi: 10.1016/j.jcs.2023.103724
[42]

Wang X, Yuan Y, Yue T. 2015. The application of starch-based ingredients in flavor encapsulation. Starch 67:225−36

doi: 10.1002/star.201400163
[43]

Zhu W, Zheng F, Song X, Ren H, Gong H. 2020. Influence of formulation parameters on lipid oxidative stability of Pickering emulsion stabilized by hydrophobically modified starch particles. Carbohydrate Polymers 246:116649

doi: 10.1016/j.carbpol.2020.116649
[44]

Liang S, Du J, Hong Y, Cheng L, Gu Z, et al. 2023. Octenyl succinate anhydride debranched starch-based nanocarriers for curcumin with improved stability and antioxidant activity. Food Hydrocolloids 135:108118

doi: 10.1016/j.foodhyd.2022.108118