[1]

Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA. 2004. Genetic control of branching in foxtail millet. Proceedings of the National Academy of Sciences 101(24):9045−50

doi: 10.1073/pnas.0402892101
[2]

Doust AN, Kellogg EA, Devos KM, Bennetzen JL. 2009. Foxtail millet: a sequence-driven grass model system. Plant physiology 149(1):137−41

doi: 10.1104/pp.108.129627
[3]

Diao X, Schnable J, Bennetzen JL, Li J. 2014. Initiation of Setaria as a model plant. Frontiers of Agricultural Science and Engineering 1(1):16–20. https://journal.hep.com.cn/fase/EN/10.15302/J-FASE-2014011

[4]

Liu Z, Bai G, Zhang D, Zhu C, Xia X, et al. 2011. Genetic diversity and population structure of elite foxtail millet [Setaria italica (L.) P. Beauv. ] germplasm in China. Crop science 51(4):1655−63

doi: 10.2135/cropsci2010.11.0643
[5]

Diao X, Jia G. 2017. Origin and domestication of foxtail millet. In Genetics and genomics of Setaria, ed. Doust A, Diao X. Vol 19. Cham: Springer. pp. 61−72. https://doi.org/10.1007/978-3-319-45105-3_4

[6]

Shahidi F, Chandrasekara A. 2013. Millet grain phenolics and their role in disease risk reduction and health promotion: A review. Journal of Functional Foods 5(2):570−81

doi: 10.1016/j.jff.2013.02.004
[7]

Kaur P, Purewal SS, Sandhu KS, Kaur M, Salar RK. 2019. Millets: A cereal grain with potent antioxidants and health benefits. Journal of Food Measurement and Characterization 13:793−806

doi: 10.1007/s11694-018-9992-0
[8]

Liang S, Liang K. 2019. Millet grain as a candidate antioxidant food resource: a review. International Journal of Food Properties 22(1):1652−61

doi: 10.1080/10942912.2019.1668406
[9]

Sachdev N, Goomer S, Singh LR. 2021. Foxtail millet: a potential crop to meet future demand scenario for alternative sustainable protein. Journal of the Science of Food and Agriculture 101(3):831−42

doi: 10.1002/jsfa.10716
[10]

Sushree Shyamli P, Rana S, Suranjika S, Muthamilarasan M, Parida A, et al. 2021. Genetic determinants of micronutrient traits in graminaceous crops to combat hidden hunger. Theoretical and Applied Genetics 134:3147−65

doi: 10.1007/s00122-021-03878-z
[11]

Amadou I, Amza T, Shi YH, Le GW. 2011. Chemical analysis and antioxidant properties of foxtail millet bran extracts. Songklanakarin Journal of Science & Technology 33(5):509−15

[12]

Liang S, Yang G, Ma Y. 2010. Chemical characteristics and fatty acid profile of foxtail millet bran oil. Journal of the American Oil Chemists' Society 87(1):63−67

doi: 10.1007/s11746-009-1475-3
[13]

Sharma N, Niranjan K. 2018. Foxtail millet: Properties, processing, health benefits, and uses. Food Reviews International 34(4):329−63

doi: 10.1080/87559129.2017.1290103
[14]

Muthamilarasan M, Prasad M. 2015. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theoretical and Applied Genetics 128:1−14

doi: 10.1007/s00122-014-2399-3
[15]

Povilus RA, Gehring M. 2022. Maternal-filial transfer structures in endosperm: A nexus of nutritional dynamics and seed development. Current Opinion in Plant Biology 65:102121

doi: 10.1016/j.pbi.2021.102121
[16]

Shen S, Ma S, Chen XM, Yi F, Li BB, et al. 2022. A transcriptional landscape underlying sugar import for grain set in maize. The Plant Journal 110(1):228−42

doi: 10.1111/tpj.15668
[17]

Agarwal P, Kapoor S, Tyagi AK. 2011. Transcription factors regulating the progression of monocot and dicot seed development. Bioessays 33(3):189−202

doi: 10.1002/bies.201000107
[18]

Locascio A, Roig-Villanova I, Bernardi J, Varotto S. 2014. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. Frontiers in Plant Science 5:412

doi: 10.3389/fpls.2014.00412
[19]

O'Neill JP, Colon KT, Jenik PD. 2019. The onset of embryo maturation in Arabidopsis is determined by its developmental stage and does not depend on endosperm cellularization. The Plant Journal 99(2):286−301

doi: 10.1111/tpj.14324
[20]

Wang T, Lu Q, Song H, Hu N, Wei Y, et al. 2021. DNA methylation and RNA-sequencing analysis show epigenetic function during grain filling in foxtail millet (Setaria italica L.). Frontiers in Plant Science 12:741415

doi: 10.3389/fpls.2021.741415
[21]

Slafer GA, Foulkes MJ, Reynolds MP, Murchie EH, Carmo-Silva E, et al. 2023. A 'wiring diagram' for sink strength traits impacting wheat yield potential. Journal of Experimental Botany 74(1):40−71

doi: 10.1093/jxb/erac410
[22]

Liu D, Zhao H, Xiao Y, Zhang G, Cao S, et al. 2022. A cryptic inhibitor of cytokinin phosphorelay controls rice grain size. Molecular Plant 15(2):293−307

doi: 10.1016/j.molp.2021.09.010
[23]

Zhao Y. 2018. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annual Review of Plant Biology 69:417−35

doi: 10.1146/annurev-arplant-042817-040226
[24]

Sosso D, Luo D, Li QB, Sasse J, Yang J, et al. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics 47(12):1489−93

doi: 10.1038/ng.3422
[25]

Ueda T, Waverczak W, Ward K, Sher N, Ketudat M, et al. 1992. Mutations of the 22- and 27-kD zein promoters affect transactivation by the Opaque-2 protein. The Plant Cell 4(6):701−9

doi: 10.1105/tpc.4.6.701
[26]

Feng F, Qi W, Lv Y, Yan S, Xu L, et al. 2018. OPAQUE11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism. The Plant Cell 30(2):375−96

doi: 10.1105/tpc.17.00616
[27]

Sun Q, Li Y, Gong D, Hu A, Zhong W, et al. 2022. A NAC-EXPANSIN module enhances maize kernel size by controlling nucellus elimination. Nature Communications 13(1):5708

doi: 10.1038/s41467-022-33513-4
[28]

Zhang Z, Dong J, Ji C, Wu Y, Messing J. 2019. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proceedings of the National Academy of Sciences of the United States of America 116(23):11223−28

doi: 10.1073/pnas.1904995116
[29]

Ishimaru T, Ida M, Hirose S, Shimamura S, Masumura T, et al. 2015. Laser microdissection-based gene expression analysis in the aleurone layer and starchy endosperm of developing rice caryopses in the early storage phase. Rice 8:22

doi: 10.1186/s12284-015-0057-2
[30]

Liu J, Wu X, Yao X, Yu R, Larkin PJ, et al. 2018. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proceedings of the National Academy of Sciences of the United States of America 115(44):11327−32

doi: 10.1073/pnas.1806304115
[31]

Zhang D, Zhang M, Zhou Y, Wang Y, Shen J, et al. 2019. The Rice G Protein γ Subunit DEP1/qPE9–1 Positively Regulates Grain-Filling Process by Increasing Auxin and Cytokinin Content in Rice Grains. Rice 12:91

doi: 10.1186/s12284-019-0344-4
[32]

Mishra BS, Sharma M, Laxmi A. 2022. Role of sugar and auxin crosstalk in plant growth and development. Physiologia Plantarum 174(1):e13546

doi: 10.1111/ppl.13546
[33]

Kuanar SR, Molla KA, Chattopadhyay K, Sarkar RK, Mohapatra PK. 2019. Introgression of Sub1 (SUB1) QTL in mega rice cultivars increases ethylene production to the detriment of grain-filling under stagnant flooding. Scientific Reports 9(1):18567

doi: 10.1038/s41598-019-54908-2
[34]

Wang Z, Xu Y, Chen T, Zhang H, Yang J, et al. 2015. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. Planta 241:1091−107

doi: 10.1007/s00425-015-2245-0
[35]

Xiang J, Tang S, Zhi H, Jia G, Wang H, et al. 2017. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L.) P. Beauv. ]. PLoS ONE 12(6):e0178730

doi: 10.1371/journal.pone.0178730
[36]

Pan Y, Ma X, Liang H, Zhao Q, Zhu D, et al. 2015. Spatial and temporal activity of the foxtail millet (Setaria italica) seed-specific promoter pF128. Planta 241(1):57−67

doi: 10.1007/s00425-014-2164-5
[37]

Liu K, Qi S, Li D, Jin C, Gao C, et al. 2017. TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica). Plant Science 254:60−69

doi: 10.1016/j.plantsci.2016.10.010
[38]

Wang M, Li P, Li C, Pan Y, Jiang X, et al. 2014. SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biology 14:290

doi: 10.1186/s12870-014-0290-7
[39]

Guo J, Zhou X, Dai K, Yuan X, Guo P, et al. 2022. Comprehensive analysis of YABBY gene family in foxtail millet (Setaria italica) and functional characterization of SiDL. Journal of Integrative Agriculture 21(10):2876−87

doi: 10.1016/j.jia.2022.07.052
[40]

Zhang B, Liu J, Cheng L, Zhang Y, Hou S, et al. 2019. Carotenoid composition and expression of biosynthetic genes in yellow and white foxtail millet [Setaria italica (L.) Beauv.]. Journal of Cereal Science 85:84−90

doi: 10.1016/j.jcs.2018.11.005
[41]

Fan Y, Wei X, Lai D, Yang H, Feng L, et al. 2021. Genome-wide investigation of the GRAS transcription factor family in foxtail millet (Setaria italica L.). BMC Plant Biology 21:508

doi: 10.1186/s12870-021-03277-y
[42]

Hussin SH, Wang H, Tang S, Zhi H, Tang C, et al. 2021. SiMADS34, an E-class MADS-box transcription factor, regulates inflorescence architecture and grain yield in Setaria italica. Plant Molecular Biology 105(4-5):419−34

doi: 10.1007/s11103-020-01097-6
[43]

Tang S, Zhao Z, Liu X, Sui Y, Zhang D, et al. 2023. An E2-E3 pair contributes to seed size control in grain crops. Nature Communications 14:3091

doi: 10.1038/s41467-023-38812-y
[44]

Wang T, Song H, Li P, Wei Y, Hu N, et al. 2020. Transcriptome Analysis Provides Insights into Grain Filling in Foxtail Millet (Setaria italica L.). International Journal of Molecular Sciences 21(14):5031

doi: 10.3390/ijms21145031
[45]

Zhao Z, Liu D, Cui Y, Li S, Liang D, et al. 2020. Genome-wide identification and characterization of long non-coding RNAs related to grain yield in foxtail millet [Setaria italica (L. ) P. Beauv. ]. BMC genomics 21:1

doi: 10.1186/s12864-019-6419-1
[46]

Yuan Y, Liu C, Zhao G, Gong X, Dang K, et al. 2021. Transcriptome analysis reveals the mechanism associated with dynamic changes in fatty acid and phytosterol content in foxtail millet (Setaria italica) during seed development. Food Research International 145:110429

doi: 10.1016/j.foodres.2021.110429
[47]

Hou S, Man X, Lian B, Ma G, Sun Z, et al. 2022. Folate metabolic profiling and expression of folate metabolism-related genes during panicle development in foxtail millet (Setaria italica (L.) P. Beauv.). Journal of the Science of Food and Agriculture 102(1):268−79

doi: 10.1002/jsfa.11355
[48]

Wang T, Xing L, Song H, Wei Y, Li P, et al. 2023. Large-scale metabolome analysis reveals dynamic changes of metabolites during foxtail millet grain filling. Food Research International 165:112516

doi: 10.1016/j.foodres.2023.112516
[49]

Song H, Wang T, Li L, Xing L, Xie H, et al. 2022. Comparative transcriptome analysis provides insights into grain filling commonalities and differences between foxtail millet [Setaria italica (L.) P. Beauv.] varieties with different panicle types. PeerJ 10:e12968

doi: 10.7717/peerj.12968
[50]

Moreno-Sanz P, D'Amato E, Nebish A, Costantini L, Grando MS. 2020. An optimized histological proceeding to study the female gametophyte development in grapevine. Plant Methods 16:61

doi: 10.1186/s13007-020-00604-6
[51]

Wu X, Liu J, Li D, Liu CM. 2016. Rice caryopsis development II: Dynamic changes in the endosperm. Journal of Integrative Plant Biology 58(9):786−98

doi: 10.1111/jipb.12488
[52]

Wu X, Liu J, Li D, Liu CM. 2016. Rice caryopsis development I: dynamic changes in different cell layers. Journal of Integrative Plant Biology 58(9):772−85

doi: 10.1111/jipb.12440
[53]

Grimault A, Gendrot G, Chamot S, Widiez T, Rabillé H, et al. 2015. ZmZHOUPI, an endosperm-specific basic helix-loop-helix transcription factor involved in maize seed development. The Plant Journal 84(3):574−86

doi: 10.1111/tpj.13024
[54]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114−20

doi: 10.1093/bioinformatics/btu170
[55]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12(4):357−60

doi: 10.1038/nmeth.3317
[56]

Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, et al. 2012. Reference genome sequence of the model plant Setaria. Nature Biotechnology 30(6):555−61

doi: 10.1038/nbt.2196
[57]

Anders S, Huber W. 2012. Differential expression of RNA-Seq data at the gene level–the DESeq package. Heidelberg, Germany: European Molecular Biology Laboratory (EMBL). 10:f1000 https://bioconductor.statistik.tu-dortmund.de/packages/3.8/bioc/vignettes/DESeq/inst/doc/DESeq.pdf

[58]

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, et al. 2008. KEGG for linking genomes to life and the environment. Nucleic acids research 36:D480−D884

doi: 10.1093/nar/gkm882
[59]

Wang C, Wang Y, Cheng Z, Zhao Z, Chen J, et al. 2016. The role of OsMSH4 in male and female gamete development in rice meiosis. Journal of Experimental Botany 67(5):1447−59

doi: 10.1093/jxb/erv540
[60]

Itoh JI, Nonomura KI, Ikeda K, Yamaki S, Inukai Y, et al. 2005. Rice Plant Development: from Zygote to Spikelet. Plant and Cell Physiology 46(1):23−47

doi: 10.1093/pcp/pci501
[61]

Counce PA, Moldenhauer KAK. 2019. Morphology of rice seed development and its influence on grain quality. In Rice Grain Quality. Methods in Molecular Biology, ed. Sreenivasulu N. vol 1892. New York: Humana Press. pp. 57−74. https://doi.org/10.1007/978-1-4939-8914-0_3

[62]

Bai F, Settles AM. 2015. Imprinting in plants as a mechanism to generate seed phenotypic diversity. Frontiers in Plant Science 5:780

doi: 10.3389/fpls.2014.00780
[63]

Chateigner-Boutin AL, Ordaz-Ortiz JJ, Alvarado C, Bouchet B, Durand S, et al. 2016. Developing pericarp of maize: A model to study arabinoxylan synthesis and feruloylation. Frontiers in Plant Science 7:1476

doi: 10.3389/fpls.2016.01476
[64]

Ciampitti IA, Elmore RW, Lauer J. 2011. Corn growth and development. Report. Dent 5. USA: Iowa State University Extension. pp. 28−39.

[65]

Zadoks JC, Chang TT, Konzak CF. 1974. A decimal code for the growth stages of cereals. Weed Research 14(6):415−21

doi: 10.1111/j.1365-3180.1974.tb01084.x
[66]

Waddington SR, Cartwright PM, Wall PC. 1983. A quantitative scale of spike initial and pistil development in barley and wheat. Annals of Botany 51(1):119−30

doi: 10.1093/oxfordjournals.aob.a086434
[67]

Zhang S, Ghatak A, Bazargani MM, Bajaj P, Varshney RK, et al. 2021. Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process. The Plant Journal 107(3):669−87

doi: 10.1111/tpj.15410
[68]

Becraft PW, Yi G. 2011. Regulation of aleurone development in cereal grains. Journal of Experimental Botany 62(5):1669−75

doi: 10.1093/jxb/erq372
[69]

Pérez-Rodríguez P, Riaño-Pachón DM, Corrêa LGG, Rensing SA, Kersten B, et al. 2010. PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Research 38:D822−D827

doi: 10.1093/nar/gkp805
[70]

Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, et al. 2003. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. The Plant Cell 15(9):2076−92

doi: 10.1105/tpc.014597
[71]

Zhang CQ, Xu Y, Lu Y, Yu HX, Gu MH, et al. 2011. The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta 234(3):541−54

doi: 10.1007/s00425-011-1423-y
[72]

Luo X, Bai X, Sun X, Zhu D, Liu B, et al. 2013. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. Journal of Experimental Botany 64(8):2155−69

doi: 10.1093/jxb/ert073
[73]

Schilling S, Pan S, Kennedy A, Melzer R. 2018. MADS-box genes and crop domestication: the jack of all traits. Journal of Experimental Botany 69(7):1447−69

doi: 10.1093/jxb/erx479
[74]

Lai D, Yan J, He A, Xue G, Yang H, et al. 2022. Genome-wide identification, phylogenetic and expression pattern analysis of MADS-box family genes in foxtail millet (Setaria italica). Scientific Reports 12(1):4979

doi: 10.1038/s41598-022-07103-9
[75]

Zuo ZF, Lee HY, Kang HG. 2023. Basic Helix-Loop-Helix Transcription Factors: Regulators for Plant Growth Development and Abiotic Stress Responses. International Journal of Molecular Sciences 24(2):1419

doi: 10.3390/ijms24021419
[76]

Das AK, Hao L. 2022. Functional characterization of ZmbHLH121, a bHLH transcription factor, focusing on Zea mays kernel development. Gene Reports 28:101645

doi: 10.1016/j.genrep.2022.101645
[77]

Luo J, Liu H, Zhou T, Gu B, Huang X, et al. 2013. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. The Plant Cell 25(9):3360−76

doi: 10.1105/tpc.113.113589
[78]

Yang X, Ren Y, Cai Y, Niu M, Feng Z, et al. 2018. Overexpression of OsbHLH107, a member of the basic helix-loop-helix transcription factor family, enhances grain size in rice (Oryza sativa L.). Rice 11:41

doi: 10.1186/s12284-018-0237-y
[79]

Li C, Qiao Z, Qi W, Wang Q, Yuan Y, et al. 2015. Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize. The Plant Cell 27(3):532−45

doi: 10.1105/tpc.114.134858
[80]

Cao R, Zhao S, Jiao G, Duan Y, Ma L, et al. 2022. OPAQUE3, encoding a transmembrane bZIP transcription factor, regulates endosperm storage protein and starch biosynthesis in rice. Plant Communications 3(6):100463

doi: 10.1016/j.xplc.2022.100463
[81]

Saidi A, Hajibarat Z. 2021. Phytohormones: plant switchers in developmental and growth stages in potato. Journal, Genetic Engineering & Biotechnology 19(1):89

doi: 10.1186/s43141-021-00192-5
[82]

Zažímalová E, Murphy AS, Yang H, Hoyerová K, Hošek P. 2010. Auxin transporters—why so many? Cold Spring Harbor perspectives in biology 2(3):a001552

doi: 10.1101/cshperspect.a001552
[83]

Zhao Y. 2012. Auxin biosynthesis: A simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Molecular Plant 5(2):334−38

doi: 10.1093/mp/ssr104
[84]

Chen Y, Liu B, Zhao Y, Yu W, Si W. 2021. Whole-genome duplication and purifying selection contributes to the functional redundancy of Auxin Response Factor (ARF) genes in foxtail millet (Setaria italica L.). International Journal of Genomics 2021:2590665

doi: 10.1155/2021/2590665
[85]

Ma X, Dai S, Qin N, Zhu C, Qin J, et al. 2023. Genome-wide identification and expression analysis of the SAUR gene family in foxtail millet (Setaria italica L.). BMC Plant Biology 23(1):31

doi: 10.1186/s12870-023-04055-8
[86]

Fu J, Yu H, Li X, Xiao J, Wang S. 2011. Rice GH3 gene family: Regulators of growth and development. Plant Signaling & Behavior 6(4):570−74

doi: 10.4161/psb.6.4.14947
[87]

Hui S, Zhang M, Hao M, Yuan M. 2019. Rice group I GH3 gene family, positive regulators of bacterial pathogens. Plant Signaling & Behavior 14(5):e1588659

doi: 10.1080/15592324.2019.1588659
[88]

Mok MC. 2019. Cytokinins and plant development—an overview. In Cytokinins, ed. Mok MC. Boca Raton: CRC Press. pp. 155–66. https://doi.org/10.1201/9781351071284-12

[89]

Wu K, Xu H, Gao X, Fu X. 2021. New insights into gibberellin signaling in regulating plant growth–metabolic coordination. Current Opinion in Plant Biology 63:102074

doi: 10.1016/j.pbi.2021.102074
[90]

Kozaki A, Aoyanagi T. 2022. Molecular aspects of seed development controlled by gibberellins and abscisic acids. International Journal of Molecular Sciences 23(3):1876

doi: 10.3390/ijms23031876
[91]

Hernández-García J, Briones-Moreno A, Blázquez MA. 2021. Origin and evolution of gibberellin signaling and metabolism in plants. Seminars in Cell & Developmental Biology 109:46−54

doi: 10.1016/j.semcdb.2020.04.009
[92]

Blázquez MA, Nelson DC, Weijers D. 2020. Evolution of plant hormone response pathways. Annual Review of Plant Biology 71(1):327−53

doi: 10.1146/annurev-arplant-050718-100309
[93]

Sano N, Marion-Poll A. 2021. ABA metabolism and homeostasis in seed dormancy and germination. International Journal of Molecular Sciences 22(10):5069

doi: 10.3390/ijms22105069
[94]

Parwez R, Aftab T, Gill SS, Naeem M. 2022. Abscisic acid signaling and crosstalk with phytohormones in regulation of environmental stress responses. Environmental and Experimental Botany 199:104885

doi: 10.1016/j.envexpbot.2022.104885
[95]

Tang J, Han Z, Chai J. 2016. Q&A: what are brassinosteroids and how do they act in plants? BMC Biology 14:113

doi: 10.1186/s12915-016-0340-8
[96]

Manghwar H, Hussain A, Ali Q, Liu F. 2022. Brassinosteroids (BRs) role in plant development and coping with different stresses. International Journal of Molecular Sciences 23(3):1012

doi: 10.3390/ijms23031012
[97]

Zhao M, Tang S, Zhang H, He M, Liu J, et al. 2020. DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proceedings of the National Academy of Sciences of the United States of America 117(35):21766−74

doi: 10.1073/pnas.2002278117
[98]

Li C, Fu K, Guo W, Zhang X, Li C, et al. 2023. Starch and sugar metabolism response to post-anthesis drought stress during critical periods of elite wheat (Triticum aestivum L.) endosperm development. Journal of Plant Growth Regulation 42:5476−94

doi: 10.1007/s00344-023-10930-3
[99]

Li K, Zhang T, Sui Z, Narayanamoorthy S, Jin C, et al. 2019. Genetic variation in starch physicochemical properties of Chinese foxtail millet (Setaria italica Beauv.). International Journal of Biological Macromolecules 133:337−45

doi: 10.1016/j.ijbiomac.2019.04.022
[100]

Woo YM, Hu DWN, Larkins BA, Jung R. 2001. Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. The Plant Cell 13:2297−317

doi: 10.1105/tpc.010240
[101]

Huang Y, Wang H, Zhu Y, Huang X, Li S, et al. 2022. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature 612:292−300

doi: 10.1038/s41586-022-05441-2
[102]

Qiao Z, Qi W, Wang Q, Feng YN, Yang Q, et al. 2016. ZmMADS47 Regulates Zein Gene Transcription through Interaction with Opaque2. PLoS Genetics 12(4):e1005991

doi: 10.1371/journal.pgen.1005991
[103]

Hou S, Men Y, Wei M, Zhang Y, Li H, et al. 2022. Total Protein Content, Amino Acid Composition and Eating-Quality Evaluation of Foxtail Millet (Setaria italica (L. ) P. Beauv). Foods 12(1):31

doi: 10.3390/foods12010031
[104]

Li X, Gao J, Song J, Guo K, Hou S, et al. 2022. Multi-omics analyses of 398 foxtail millet accessions reveal genomic regions associated with domestication, metabolite traits, and anti-inflammatory effects. Molecular Plant 15(8):1367−83

doi: 10.1016/j.molp.2022.07.003
[105]

Zhou X, Rao S, Wrightstone E, Sun T, Lui ACW, et al. 2022. Phytoene Synthase: The Key Rate-Limiting Enzyme of Carotenoid Biosynthesis in Plants. Frontiers in Plant Science 13:884720

doi: 10.3389/fpls.2022.884720
[106]

Dhaka A, Muthamilarasan M, Prasad M. 2021. A comprehensive study on core enzymes involved in starch metabolism in the model nutricereal, foxtail millet (Setaria italica L.). Journal of Cereal Science 97:103153

doi: 10.1016/j.jcs.2020.103153
[107]

Zhang Y, Gao J, Qie Q, Yang Y, Hou S, et al. 2021. Comparative analysis of flavonoid metabolites in foxtail millet (Setaria italica) with different eating quality. Life 11(6):578

doi: 10.3390/life11060578
[108]

Chowdhary AA, Mishra S, Mehrotra S, Upadhyay SK, Bagal D, et al. 2023. Plant transcription factors: an overview of their role in plant life. In Plant Transcription Factors, eds. Srivastava V, Mishra S, Mehrotra S, Upadhyay SK. Netherlands: Elsevier. pp. 3–20. https://doi.org/10.1016/b978-0-323-90613-5.00003-0

[109]

Srivastava V, Mishra S, Mehrotra S, Upadhyay SK. 2022. Plant Transcription Factors: Contribution in Development, Metabolism, and Environmental Stress. Netherlands: Elsevier. https://doi.org/10.1016/C2020-0-04071-5

[110]

Dai D, Ma Z, Song R. 2021. Maize endosperm development. Journal of Integrative Plant Biology 63(4):613−27

doi: 10.1111/jipb.13069
[111]

Feng F, Song R. 2018. O11 is multi-functional regulator in maize endosperm. Plant Signaling & Behavior 13(4):e1451709

doi: 10.1080/15592324.2018.1451709
[112]

Jain R, Dhaka N, Yadav P, Sharma R. 2023. Role of phytohormones in regulating agronomically important seed traits in crop plants. In Plant Hormones in Crop Improvement, eds. Khan MIR, Singh A, Poór P. Netherlands: Elsevier. pp. 65–88. https://doi.org/10.1016/b978-0-323-91886-2.00002-1

[113]

Liu J, Shi X, Chang Z, Ding Y, Ding C. 2022. Auxin efflux transporters OsPIN1c and OsPIN1d function redundantly in regulating rice (Oryza sativa L.) panicle development. Plant and Cell Physiology 63(3):305−16

doi: 10.1093/pcp/pcab172
[114]

Zhao Z, Tang S, Li W, Yang X, Wang R, et al. 2021. Overexpression of a BRASSINAZOLE RESISTANT 1 homolog attenuates drought tolerance by suppressing the expression of PLETHORA-LIKE 1 in Setaria italica. The Crop Journal 9(5):1208−1213

doi: 10.1016/j.cj.2021.02.006
[115]

Yu G, Gaoyang Y, Liu L, Shoaib N, Deng Y, et al. 2022. The structure, function, and regulation of starch synthesis enzymes SSIII with emphasis on maize. Agronomy 12(6):1359

doi: 10.3390/agronomy12061359
[116]

Jeon JS, Ryoo N, Hahn TR, Walia H, Nakamura Y. 2010. Starch biosynthesis in cereal endosperm. Plant Physiology and Biochemistry 48(6):383−92

doi: 10.1016/j.plaphy.2010.03.006
[117]

Smith AM. 2012. Starch in the Arabidopsis plant. Starch 64(6):421−34

doi: 10.1002/star.201100163
[118]

Fukunaga K, Kawase M, Kato K. 2002. Structural variation in the Waxy gene and differentiation in foxtail millet [Setaria italica (L.) P. Beauv.]: implications for multiple origins of the waxy phenotype. Molecular Genetics and Genomics 268(2):214−22

doi: 10.1007/s00438-002-0728-8
[119]

Van K, Onoda S, Kim MY, Kim KD, Lee SH. 2008. Allelic variation of the Waxy gene in foxtail millet [Setaria italica (L.) P. Beauv.] by single nucleotide polymorphisms. Molecular Genetics and Genomics 279(3):255−66

doi: 10.1007/s00438-007-0310-5
[120]

Yang Q, Yuan Y, Liu J, Han M, Li J, et al. 2023. Transcriptome analysis reveals new insights in the starch biosynthesis of non-waxy and waxy broomcorn millet (Panicum miliaceum L.). International Journal of Biological Macromolecules 230:123155

doi: 10.1016/j.ijbiomac.2023.123155
[121]

Wu Y, Holding DR, Messing J. 2010. γ-Zeins are essential for endosperm modification in quality protein maize. Proceedings of the National Academy of Sciences of the United States of America 107:12810−15

doi: 10.1073/pnas.1004721107
[122]

Zhang Z, Yang J, Wu Y. 2015. Transcriptional regulation of zein gene expression in maize through the additive and synergistic action of opaque2, Prolamine-box binding factor, and O2 heterodimerizing proteins. The Plant Cell 27(4):1162−72

doi: 10.1105/tpc.15.00035
[123]

Liu CN, Rubenstein I. 1993. Transcriptional characterization of an α-zein gene cluster in maize. Plant Molecular Biology 22(2):323−36

doi: 10.1007/BF00014939
[124]

Song R, Segal G, Messing J. 2004. Expression of the sorghum 10-member kafirin gene cluster in maize endosperm. Nucleic Acids Research 32(22):e189

doi: 10.1093/nar/gnh183
[125]

He L, Cheng L, Wang J, Liu J, Cheng J, et al. 2022. Carotenoid Cleavage Dioxygenase 1 catalyzes lutein degradation to influence carotenoid accumulation and color development in foxtail millet grains. Journal of Agricultural and Food Chemistry 70(30):9283−94

doi: 10.1021/acs.jafc.2c01951