[1]
|
Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA. 2004. Genetic control of branching in foxtail millet. Proceedings of the National Academy of Sciences 101(24):9045−50 doi: 10.1073/pnas.0402892101
CrossRef Google Scholar
|
[2]
|
Doust AN, Kellogg EA, Devos KM, Bennetzen JL. 2009. Foxtail millet: a sequence-driven grass model system. Plant physiology 149(1):137−41 doi: 10.1104/pp.108.129627
CrossRef Google Scholar
|
[3]
|
Diao X, Schnable J, Bennetzen JL, Li J. 2014. Initiation of Setaria as a model plant. Frontiers of Agricultural Science and Engineering 1(1):16–20. https://journal.hep.com.cn/fase/EN/10.15302/J-FASE-2014011
|
[4]
|
Liu Z, Bai G, Zhang D, Zhu C, Xia X, et al. 2011. Genetic diversity and population structure of elite foxtail millet [Setaria italica (L.) P. Beauv. ] germplasm in China. Crop science 51(4):1655−63 doi: 10.2135/cropsci2010.11.0643
CrossRef Google Scholar
|
[5]
|
Diao X, Jia G. 2017. Origin and domestication of foxtail millet. In Genetics and genomics of Setaria, ed. Doust A, Diao X. Vol 19. Cham: Springer. pp. 61−72. https://doi.org/10.1007/978-3-319-45105-3_4
|
[6]
|
Shahidi F, Chandrasekara A. 2013. Millet grain phenolics and their role in disease risk reduction and health promotion: A review. Journal of Functional Foods 5(2):570−81 doi: 10.1016/j.jff.2013.02.004
CrossRef Google Scholar
|
[7]
|
Kaur P, Purewal SS, Sandhu KS, Kaur M, Salar RK. 2019. Millets: A cereal grain with potent antioxidants and health benefits. Journal of Food Measurement and Characterization 13:793−806 doi: 10.1007/s11694-018-9992-0
CrossRef Google Scholar
|
[8]
|
Liang S, Liang K. 2019. Millet grain as a candidate antioxidant food resource: a review. International Journal of Food Properties 22(1):1652−61 doi: 10.1080/10942912.2019.1668406
CrossRef Google Scholar
|
[9]
|
Sachdev N, Goomer S, Singh LR. 2021. Foxtail millet: a potential crop to meet future demand scenario for alternative sustainable protein. Journal of the Science of Food and Agriculture 101(3):831−42 doi: 10.1002/jsfa.10716
CrossRef Google Scholar
|
[10]
|
Sushree Shyamli P, Rana S, Suranjika S, Muthamilarasan M, Parida A, et al. 2021. Genetic determinants of micronutrient traits in graminaceous crops to combat hidden hunger. Theoretical and Applied Genetics 134:3147−65 doi: 10.1007/s00122-021-03878-z
CrossRef Google Scholar
|
[11]
|
Amadou I, Amza T, Shi YH, Le GW. 2011. Chemical analysis and antioxidant properties of foxtail millet bran extracts. Songklanakarin Journal of Science & Technology 33(5):509−15
Google Scholar
|
[12]
|
Liang S, Yang G, Ma Y. 2010. Chemical characteristics and fatty acid profile of foxtail millet bran oil. Journal of the American Oil Chemists' Society 87(1):63−67 doi: 10.1007/s11746-009-1475-3
CrossRef Google Scholar
|
[13]
|
Sharma N, Niranjan K. 2018. Foxtail millet: Properties, processing, health benefits, and uses. Food Reviews International 34(4):329−63 doi: 10.1080/87559129.2017.1290103
CrossRef Google Scholar
|
[14]
|
Muthamilarasan M, Prasad M. 2015. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theoretical and Applied Genetics 128:1−14 doi: 10.1007/s00122-014-2399-3
CrossRef Google Scholar
|
[15]
|
Povilus RA, Gehring M. 2022. Maternal-filial transfer structures in endosperm: A nexus of nutritional dynamics and seed development. Current Opinion in Plant Biology 65:102121 doi: 10.1016/j.pbi.2021.102121
CrossRef Google Scholar
|
[16]
|
Shen S, Ma S, Chen XM, Yi F, Li BB, et al. 2022. A transcriptional landscape underlying sugar import for grain set in maize. The Plant Journal 110(1):228−42 doi: 10.1111/tpj.15668
CrossRef Google Scholar
|
[17]
|
Agarwal P, Kapoor S, Tyagi AK. 2011. Transcription factors regulating the progression of monocot and dicot seed development. Bioessays 33(3):189−202 doi: 10.1002/bies.201000107
CrossRef Google Scholar
|
[18]
|
Locascio A, Roig-Villanova I, Bernardi J, Varotto S. 2014. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. Frontiers in Plant Science 5:412 doi: 10.3389/fpls.2014.00412
CrossRef Google Scholar
|
[19]
|
O'Neill JP, Colon KT, Jenik PD. 2019. The onset of embryo maturation in Arabidopsis is determined by its developmental stage and does not depend on endosperm cellularization. The Plant Journal 99(2):286−301 doi: 10.1111/tpj.14324
CrossRef Google Scholar
|
[20]
|
Wang T, Lu Q, Song H, Hu N, Wei Y, et al. 2021. DNA methylation and RNA-sequencing analysis show epigenetic function during grain filling in foxtail millet (Setaria italica L.). Frontiers in Plant Science 12:741415 doi: 10.3389/fpls.2021.741415
CrossRef Google Scholar
|
[21]
|
Slafer GA, Foulkes MJ, Reynolds MP, Murchie EH, Carmo-Silva E, et al. 2023. A 'wiring diagram' for sink strength traits impacting wheat yield potential. Journal of Experimental Botany 74(1):40−71 doi: 10.1093/jxb/erac410
CrossRef Google Scholar
|
[22]
|
Liu D, Zhao H, Xiao Y, Zhang G, Cao S, et al. 2022. A cryptic inhibitor of cytokinin phosphorelay controls rice grain size. Molecular Plant 15(2):293−307 doi: 10.1016/j.molp.2021.09.010
CrossRef Google Scholar
|
[23]
|
Zhao Y. 2018. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annual Review of Plant Biology 69:417−35 doi: 10.1146/annurev-arplant-042817-040226
CrossRef Google Scholar
|
[24]
|
Sosso D, Luo D, Li QB, Sasse J, Yang J, et al. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics 47(12):1489−93 doi: 10.1038/ng.3422
CrossRef Google Scholar
|
[25]
|
Ueda T, Waverczak W, Ward K, Sher N, Ketudat M, et al. 1992. Mutations of the 22- and 27-kD zein promoters affect transactivation by the Opaque-2 protein. The Plant Cell 4(6):701−9 doi: 10.1105/tpc.4.6.701
CrossRef Google Scholar
|
[26]
|
Feng F, Qi W, Lv Y, Yan S, Xu L, et al. 2018. OPAQUE11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism. The Plant Cell 30(2):375−96 doi: 10.1105/tpc.17.00616
CrossRef Google Scholar
|
[27]
|
Sun Q, Li Y, Gong D, Hu A, Zhong W, et al. 2022. A NAC-EXPANSIN module enhances maize kernel size by controlling nucellus elimination. Nature Communications 13(1):5708 doi: 10.1038/s41467-022-33513-4
CrossRef Google Scholar
|
[28]
|
Zhang Z, Dong J, Ji C, Wu Y, Messing J. 2019. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proceedings of the National Academy of Sciences of the United States of America 116(23):11223−28 doi: 10.1073/pnas.1904995116
CrossRef Google Scholar
|
[29]
|
Ishimaru T, Ida M, Hirose S, Shimamura S, Masumura T, et al. 2015. Laser microdissection-based gene expression analysis in the aleurone layer and starchy endosperm of developing rice caryopses in the early storage phase. Rice 8:22 doi: 10.1186/s12284-015-0057-2
CrossRef Google Scholar
|
[30]
|
Liu J, Wu X, Yao X, Yu R, Larkin PJ, et al. 2018. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proceedings of the National Academy of Sciences of the United States of America 115(44):11327−32 doi: 10.1073/pnas.1806304115
CrossRef Google Scholar
|
[31]
|
Zhang D, Zhang M, Zhou Y, Wang Y, Shen J, et al. 2019. The Rice G Protein γ Subunit DEP1/qPE9–1 Positively Regulates Grain-Filling Process by Increasing Auxin and Cytokinin Content in Rice Grains. Rice 12:91 doi: 10.1186/s12284-019-0344-4
CrossRef Google Scholar
|
[32]
|
Mishra BS, Sharma M, Laxmi A. 2022. Role of sugar and auxin crosstalk in plant growth and development. Physiologia Plantarum 174(1):e13546 doi: 10.1111/ppl.13546
CrossRef Google Scholar
|
[33]
|
Kuanar SR, Molla KA, Chattopadhyay K, Sarkar RK, Mohapatra PK. 2019. Introgression of Sub1 (SUB1) QTL in mega rice cultivars increases ethylene production to the detriment of grain-filling under stagnant flooding. Scientific Reports 9(1):18567 doi: 10.1038/s41598-019-54908-2
CrossRef Google Scholar
|
[34]
|
Wang Z, Xu Y, Chen T, Zhang H, Yang J, et al. 2015. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. Planta 241:1091−107 doi: 10.1007/s00425-015-2245-0
CrossRef Google Scholar
|
[35]
|
Xiang J, Tang S, Zhi H, Jia G, Wang H, et al. 2017. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L.) P. Beauv. ]. PLoS ONE 12(6):e0178730 doi: 10.1371/journal.pone.0178730
CrossRef Google Scholar
|
[36]
|
Pan Y, Ma X, Liang H, Zhao Q, Zhu D, et al. 2015. Spatial and temporal activity of the foxtail millet (Setaria italica) seed-specific promoter pF128. Planta 241(1):57−67 doi: 10.1007/s00425-014-2164-5
CrossRef Google Scholar
|
[37]
|
Liu K, Qi S, Li D, Jin C, Gao C, et al. 2017. TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica). Plant Science 254:60−69 doi: 10.1016/j.plantsci.2016.10.010
CrossRef Google Scholar
|
[38]
|
Wang M, Li P, Li C, Pan Y, Jiang X, et al. 2014. SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biology 14:290 doi: 10.1186/s12870-014-0290-7
CrossRef Google Scholar
|
[39]
|
Guo J, Zhou X, Dai K, Yuan X, Guo P, et al. 2022. Comprehensive analysis of YABBY gene family in foxtail millet (Setaria italica) and functional characterization of SiDL. Journal of Integrative Agriculture 21(10):2876−87 doi: 10.1016/j.jia.2022.07.052
CrossRef Google Scholar
|
[40]
|
Zhang B, Liu J, Cheng L, Zhang Y, Hou S, et al. 2019. Carotenoid composition and expression of biosynthetic genes in yellow and white foxtail millet [Setaria italica (L.) Beauv.]. Journal of Cereal Science 85:84−90 doi: 10.1016/j.jcs.2018.11.005
CrossRef Google Scholar
|
[41]
|
Fan Y, Wei X, Lai D, Yang H, Feng L, et al. 2021. Genome-wide investigation of the GRAS transcription factor family in foxtail millet (Setaria italica L.). BMC Plant Biology 21:508 doi: 10.1186/s12870-021-03277-y
CrossRef Google Scholar
|
[42]
|
Hussin SH, Wang H, Tang S, Zhi H, Tang C, et al. 2021. SiMADS34, an E-class MADS-box transcription factor, regulates inflorescence architecture and grain yield in Setaria italica. Plant Molecular Biology 105(4-5):419−34 doi: 10.1007/s11103-020-01097-6
CrossRef Google Scholar
|
[43]
|
Tang S, Zhao Z, Liu X, Sui Y, Zhang D, et al. 2023. An E2-E3 pair contributes to seed size control in grain crops. Nature Communications 14:3091 doi: 10.1038/s41467-023-38812-y
CrossRef Google Scholar
|
[44]
|
Wang T, Song H, Li P, Wei Y, Hu N, et al. 2020. Transcriptome Analysis Provides Insights into Grain Filling in Foxtail Millet (Setaria italica L.). International Journal of Molecular Sciences 21(14):5031 doi: 10.3390/ijms21145031
CrossRef Google Scholar
|
[45]
|
Zhao Z, Liu D, Cui Y, Li S, Liang D, et al. 2020. Genome-wide identification and characterization of long non-coding RNAs related to grain yield in foxtail millet [Setaria italica (L. ) P. Beauv. ]. BMC genomics 21:1 doi: 10.1186/s12864-019-6419-1
CrossRef Google Scholar
|
[46]
|
Yuan Y, Liu C, Zhao G, Gong X, Dang K, et al. 2021. Transcriptome analysis reveals the mechanism associated with dynamic changes in fatty acid and phytosterol content in foxtail millet (Setaria italica) during seed development. Food Research International 145:110429 doi: 10.1016/j.foodres.2021.110429
CrossRef Google Scholar
|
[47]
|
Hou S, Man X, Lian B, Ma G, Sun Z, et al. 2022. Folate metabolic profiling and expression of folate metabolism-related genes during panicle development in foxtail millet (Setaria italica (L.) P. Beauv.). Journal of the Science of Food and Agriculture 102(1):268−79 doi: 10.1002/jsfa.11355
CrossRef Google Scholar
|
[48]
|
Wang T, Xing L, Song H, Wei Y, Li P, et al. 2023. Large-scale metabolome analysis reveals dynamic changes of metabolites during foxtail millet grain filling. Food Research International 165:112516 doi: 10.1016/j.foodres.2023.112516
CrossRef Google Scholar
|
[49]
|
Song H, Wang T, Li L, Xing L, Xie H, et al. 2022. Comparative transcriptome analysis provides insights into grain filling commonalities and differences between foxtail millet [Setaria italica (L.) P. Beauv.] varieties with different panicle types. PeerJ 10:e12968 doi: 10.7717/peerj.12968
CrossRef Google Scholar
|
[50]
|
Moreno-Sanz P, D'Amato E, Nebish A, Costantini L, Grando MS. 2020. An optimized histological proceeding to study the female gametophyte development in grapevine. Plant Methods 16:61 doi: 10.1186/s13007-020-00604-6
CrossRef Google Scholar
|
[51]
|
Wu X, Liu J, Li D, Liu CM. 2016. Rice caryopsis development II: Dynamic changes in the endosperm. Journal of Integrative Plant Biology 58(9):786−98 doi: 10.1111/jipb.12488
CrossRef Google Scholar
|
[52]
|
Wu X, Liu J, Li D, Liu CM. 2016. Rice caryopsis development I: dynamic changes in different cell layers. Journal of Integrative Plant Biology 58(9):772−85 doi: 10.1111/jipb.12440
CrossRef Google Scholar
|
[53]
|
Grimault A, Gendrot G, Chamot S, Widiez T, Rabillé H, et al. 2015. ZmZHOUPI, an endosperm-specific basic helix-loop-helix transcription factor involved in maize seed development. The Plant Journal 84(3):574−86 doi: 10.1111/tpj.13024
CrossRef Google Scholar
|
[54]
|
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114−20 doi: 10.1093/bioinformatics/btu170
CrossRef Google Scholar
|
[55]
|
Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12(4):357−60 doi: 10.1038/nmeth.3317
CrossRef Google Scholar
|
[56]
|
Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, et al. 2012. Reference genome sequence of the model plant Setaria. Nature Biotechnology 30(6):555−61 doi: 10.1038/nbt.2196
CrossRef Google Scholar
|
[57]
|
Anders S, Huber W. 2012. Differential expression of RNA-Seq data at the gene level–the DESeq package. Heidelberg, Germany: European Molecular Biology Laboratory (EMBL). 10:f1000 https://bioconductor.statistik.tu-dortmund.de/packages/3.8/bioc/vignettes/DESeq/inst/doc/DESeq.pdf
|
[58]
|
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, et al. 2008. KEGG for linking genomes to life and the environment. Nucleic acids research 36:D480−D884 doi: 10.1093/nar/gkm882
CrossRef Google Scholar
|
[59]
|
Wang C, Wang Y, Cheng Z, Zhao Z, Chen J, et al. 2016. The role of OsMSH4 in male and female gamete development in rice meiosis. Journal of Experimental Botany 67(5):1447−59 doi: 10.1093/jxb/erv540
CrossRef Google Scholar
|
[60]
|
Itoh JI, Nonomura KI, Ikeda K, Yamaki S, Inukai Y, et al. 2005. Rice Plant Development: from Zygote to Spikelet. Plant and Cell Physiology 46(1):23−47 doi: 10.1093/pcp/pci501
CrossRef Google Scholar
|
[61]
|
Counce PA, Moldenhauer KAK. 2019. Morphology of rice seed development and its influence on grain quality. In Rice Grain Quality. Methods in Molecular Biology, ed. Sreenivasulu N. vol 1892. New York: Humana Press. pp. 57−74. https://doi.org/10.1007/978-1-4939-8914-0_3
|
[62]
|
Bai F, Settles AM. 2015. Imprinting in plants as a mechanism to generate seed phenotypic diversity. Frontiers in Plant Science 5:780 doi: 10.3389/fpls.2014.00780
CrossRef Google Scholar
|
[63]
|
Chateigner-Boutin AL, Ordaz-Ortiz JJ, Alvarado C, Bouchet B, Durand S, et al. 2016. Developing pericarp of maize: A model to study arabinoxylan synthesis and feruloylation. Frontiers in Plant Science 7:1476 doi: 10.3389/fpls.2016.01476
CrossRef Google Scholar
|
[64]
|
Ciampitti IA, Elmore RW, Lauer J. 2011. Corn growth and development. Report. Dent 5. USA: Iowa State University Extension. pp. 28−39.
|
[65]
|
Zadoks JC, Chang TT, Konzak CF. 1974. A decimal code for the growth stages of cereals. Weed Research 14(6):415−21 doi: 10.1111/j.1365-3180.1974.tb01084.x
CrossRef Google Scholar
|
[66]
|
Waddington SR, Cartwright PM, Wall PC. 1983. A quantitative scale of spike initial and pistil development in barley and wheat. Annals of Botany 51(1):119−30 doi: 10.1093/oxfordjournals.aob.a086434
CrossRef Google Scholar
|
[67]
|
Zhang S, Ghatak A, Bazargani MM, Bajaj P, Varshney RK, et al. 2021. Spatial distribution of proteins and metabolites in developing wheat grain and their differential regulatory response during the grain filling process. The Plant Journal 107(3):669−87 doi: 10.1111/tpj.15410
CrossRef Google Scholar
|
[68]
|
Becraft PW, Yi G. 2011. Regulation of aleurone development in cereal grains. Journal of Experimental Botany 62(5):1669−75 doi: 10.1093/jxb/erq372
CrossRef Google Scholar
|
[69]
|
Pérez-Rodríguez P, Riaño-Pachón DM, Corrêa LGG, Rensing SA, Kersten B, et al. 2010. PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Research 38:D822−D827 doi: 10.1093/nar/gkp805
CrossRef Google Scholar
|
[70]
|
Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, et al. 2003. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. The Plant Cell 15(9):2076−92 doi: 10.1105/tpc.014597
CrossRef Google Scholar
|
[71]
|
Zhang CQ, Xu Y, Lu Y, Yu HX, Gu MH, et al. 2011. The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta 234(3):541−54 doi: 10.1007/s00425-011-1423-y
CrossRef Google Scholar
|
[72]
|
Luo X, Bai X, Sun X, Zhu D, Liu B, et al. 2013. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling. Journal of Experimental Botany 64(8):2155−69 doi: 10.1093/jxb/ert073
CrossRef Google Scholar
|
[73]
|
Schilling S, Pan S, Kennedy A, Melzer R. 2018. MADS-box genes and crop domestication: the jack of all traits. Journal of Experimental Botany 69(7):1447−69 doi: 10.1093/jxb/erx479
CrossRef Google Scholar
|
[74]
|
Lai D, Yan J, He A, Xue G, Yang H, et al. 2022. Genome-wide identification, phylogenetic and expression pattern analysis of MADS-box family genes in foxtail millet (Setaria italica). Scientific Reports 12(1):4979 doi: 10.1038/s41598-022-07103-9
CrossRef Google Scholar
|
[75]
|
Zuo ZF, Lee HY, Kang HG. 2023. Basic Helix-Loop-Helix Transcription Factors: Regulators for Plant Growth Development and Abiotic Stress Responses. International Journal of Molecular Sciences 24(2):1419 doi: 10.3390/ijms24021419
CrossRef Google Scholar
|
[76]
|
Das AK, Hao L. 2022. Functional characterization of ZmbHLH121, a bHLH transcription factor, focusing on Zea mays kernel development. Gene Reports 28:101645 doi: 10.1016/j.genrep.2022.101645
CrossRef Google Scholar
|
[77]
|
Luo J, Liu H, Zhou T, Gu B, Huang X, et al. 2013. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. The Plant Cell 25(9):3360−76 doi: 10.1105/tpc.113.113589
CrossRef Google Scholar
|
[78]
|
Yang X, Ren Y, Cai Y, Niu M, Feng Z, et al. 2018. Overexpression of OsbHLH107, a member of the basic helix-loop-helix transcription factor family, enhances grain size in rice (Oryza sativa L.). Rice 11:41 doi: 10.1186/s12284-018-0237-y
CrossRef Google Scholar
|
[79]
|
Li C, Qiao Z, Qi W, Wang Q, Yuan Y, et al. 2015. Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize. The Plant Cell 27(3):532−45 doi: 10.1105/tpc.114.134858
CrossRef Google Scholar
|
[80]
|
Cao R, Zhao S, Jiao G, Duan Y, Ma L, et al. 2022. OPAQUE3, encoding a transmembrane bZIP transcription factor, regulates endosperm storage protein and starch biosynthesis in rice. Plant Communications 3(6):100463 doi: 10.1016/j.xplc.2022.100463
CrossRef Google Scholar
|
[81]
|
Saidi A, Hajibarat Z. 2021. Phytohormones: plant switchers in developmental and growth stages in potato. Journal, Genetic Engineering & Biotechnology 19(1):89 doi: 10.1186/s43141-021-00192-5
CrossRef Google Scholar
|
[82]
|
Zažímalová E, Murphy AS, Yang H, Hoyerová K, Hošek P. 2010. Auxin transporters—why so many? Cold Spring Harbor perspectives in biology 2(3):a001552 doi: 10.1101/cshperspect.a001552
CrossRef Google Scholar
|
[83]
|
Zhao Y. 2012. Auxin biosynthesis: A simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Molecular Plant 5(2):334−38 doi: 10.1093/mp/ssr104
CrossRef Google Scholar
|
[84]
|
Chen Y, Liu B, Zhao Y, Yu W, Si W. 2021. Whole-genome duplication and purifying selection contributes to the functional redundancy of Auxin Response Factor (ARF) genes in foxtail millet (Setaria italica L.). International Journal of Genomics 2021:2590665 doi: 10.1155/2021/2590665
CrossRef Google Scholar
|
[85]
|
Ma X, Dai S, Qin N, Zhu C, Qin J, et al. 2023. Genome-wide identification and expression analysis of the SAUR gene family in foxtail millet (Setaria italica L.). BMC Plant Biology 23(1):31 doi: 10.1186/s12870-023-04055-8
CrossRef Google Scholar
|
[86]
|
Fu J, Yu H, Li X, Xiao J, Wang S. 2011. Rice GH3 gene family: Regulators of growth and development. Plant Signaling & Behavior 6(4):570−74 doi: 10.4161/psb.6.4.14947
CrossRef Google Scholar
|
[87]
|
Hui S, Zhang M, Hao M, Yuan M. 2019. Rice group I GH3 gene family, positive regulators of bacterial pathogens. Plant Signaling & Behavior 14(5):e1588659 doi: 10.1080/15592324.2019.1588659
CrossRef Google Scholar
|
[88]
|
Mok MC. 2019. Cytokinins and plant development—an overview. In Cytokinins, ed. Mok MC. Boca Raton: CRC Press. pp. 155–66. https://doi.org/10.1201/9781351071284-12
|
[89]
|
Wu K, Xu H, Gao X, Fu X. 2021. New insights into gibberellin signaling in regulating plant growth–metabolic coordination. Current Opinion in Plant Biology 63:102074 doi: 10.1016/j.pbi.2021.102074
CrossRef Google Scholar
|
[90]
|
Kozaki A, Aoyanagi T. 2022. Molecular aspects of seed development controlled by gibberellins and abscisic acids. International Journal of Molecular Sciences 23(3):1876 doi: 10.3390/ijms23031876
CrossRef Google Scholar
|
[91]
|
Hernández-García J, Briones-Moreno A, Blázquez MA. 2021. Origin and evolution of gibberellin signaling and metabolism in plants. Seminars in Cell & Developmental Biology 109:46−54 doi: 10.1016/j.semcdb.2020.04.009
CrossRef Google Scholar
|
[92]
|
Blázquez MA, Nelson DC, Weijers D. 2020. Evolution of plant hormone response pathways. Annual Review of Plant Biology 71(1):327−53 doi: 10.1146/annurev-arplant-050718-100309
CrossRef Google Scholar
|
[93]
|
Sano N, Marion-Poll A. 2021. ABA metabolism and homeostasis in seed dormancy and germination. International Journal of Molecular Sciences 22(10):5069 doi: 10.3390/ijms22105069
CrossRef Google Scholar
|
[94]
|
Parwez R, Aftab T, Gill SS, Naeem M. 2022. Abscisic acid signaling and crosstalk with phytohormones in regulation of environmental stress responses. Environmental and Experimental Botany 199:104885 doi: 10.1016/j.envexpbot.2022.104885
CrossRef Google Scholar
|
[95]
|
Tang J, Han Z, Chai J. 2016. Q&A: what are brassinosteroids and how do they act in plants? BMC Biology 14:113 doi: 10.1186/s12915-016-0340-8
CrossRef Google Scholar
|
[96]
|
Manghwar H, Hussain A, Ali Q, Liu F. 2022. Brassinosteroids (BRs) role in plant development and coping with different stresses. International Journal of Molecular Sciences 23(3):1012 doi: 10.3390/ijms23031012
CrossRef Google Scholar
|
[97]
|
Zhao M, Tang S, Zhang H, He M, Liu J, et al. 2020. DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proceedings of the National Academy of Sciences of the United States of America 117(35):21766−74 doi: 10.1073/pnas.2002278117
CrossRef Google Scholar
|
[98]
|
Li C, Fu K, Guo W, Zhang X, Li C, et al. 2023. Starch and sugar metabolism response to post-anthesis drought stress during critical periods of elite wheat (Triticum aestivum L.) endosperm development. Journal of Plant Growth Regulation 42:5476−94 doi: 10.1007/s00344-023-10930-3
CrossRef Google Scholar
|
[99]
|
Li K, Zhang T, Sui Z, Narayanamoorthy S, Jin C, et al. 2019. Genetic variation in starch physicochemical properties of Chinese foxtail millet (Setaria italica Beauv.). International Journal of Biological Macromolecules 133:337−45 doi: 10.1016/j.ijbiomac.2019.04.022
CrossRef Google Scholar
|
[100]
|
Woo YM, Hu DWN, Larkins BA, Jung R. 2001. Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. The Plant Cell 13:2297−317 doi: 10.1105/tpc.010240
CrossRef Google Scholar
|
[101]
|
Huang Y, Wang H, Zhu Y, Huang X, Li S, et al. 2022. THP9 enhances seed protein content and nitrogen-use efficiency in maize. Nature 612:292−300 doi: 10.1038/s41586-022-05441-2
CrossRef Google Scholar
|
[102]
|
Qiao Z, Qi W, Wang Q, Feng YN, Yang Q, et al. 2016. ZmMADS47 Regulates Zein Gene Transcription through Interaction with Opaque2. PLoS Genetics 12(4):e1005991 doi: 10.1371/journal.pgen.1005991
CrossRef Google Scholar
|
[103]
|
Hou S, Men Y, Wei M, Zhang Y, Li H, et al. 2022. Total Protein Content, Amino Acid Composition and Eating-Quality Evaluation of Foxtail Millet (Setaria italica (L. ) P. Beauv). Foods 12(1):31 doi: 10.3390/foods12010031
CrossRef Google Scholar
|
[104]
|
Li X, Gao J, Song J, Guo K, Hou S, et al. 2022. Multi-omics analyses of 398 foxtail millet accessions reveal genomic regions associated with domestication, metabolite traits, and anti-inflammatory effects. Molecular Plant 15(8):1367−83 doi: 10.1016/j.molp.2022.07.003
CrossRef Google Scholar
|
[105]
|
Zhou X, Rao S, Wrightstone E, Sun T, Lui ACW, et al. 2022. Phytoene Synthase: The Key Rate-Limiting Enzyme of Carotenoid Biosynthesis in Plants. Frontiers in Plant Science 13:884720 doi: 10.3389/fpls.2022.884720
CrossRef Google Scholar
|
[106]
|
Dhaka A, Muthamilarasan M, Prasad M. 2021. A comprehensive study on core enzymes involved in starch metabolism in the model nutricereal, foxtail millet (Setaria italica L.). Journal of Cereal Science 97:103153 doi: 10.1016/j.jcs.2020.103153
CrossRef Google Scholar
|
[107]
|
Zhang Y, Gao J, Qie Q, Yang Y, Hou S, et al. 2021. Comparative analysis of flavonoid metabolites in foxtail millet (Setaria italica) with different eating quality. Life 11(6):578 doi: 10.3390/life11060578
CrossRef Google Scholar
|
[108]
|
Chowdhary AA, Mishra S, Mehrotra S, Upadhyay SK, Bagal D, et al. 2023. Plant transcription factors: an overview of their role in plant life. In Plant Transcription Factors, eds. Srivastava V, Mishra S, Mehrotra S, Upadhyay SK. Netherlands: Elsevier. pp. 3–20. https://doi.org/10.1016/b978-0-323-90613-5.00003-0
|
[109]
|
Srivastava V, Mishra S, Mehrotra S, Upadhyay SK. 2022. Plant Transcription Factors: Contribution in Development, Metabolism, and Environmental Stress. Netherlands: Elsevier. https://doi.org/10.1016/C2020-0-04071-5
|
[110]
|
Dai D, Ma Z, Song R. 2021. Maize endosperm development. Journal of Integrative Plant Biology 63(4):613−27 doi: 10.1111/jipb.13069
CrossRef Google Scholar
|
[111]
|
Feng F, Song R. 2018. O11 is multi-functional regulator in maize endosperm. Plant Signaling & Behavior 13(4):e1451709 doi: 10.1080/15592324.2018.1451709
CrossRef Google Scholar
|
[112]
|
Jain R, Dhaka N, Yadav P, Sharma R. 2023. Role of phytohormones in regulating agronomically important seed traits in crop plants. In Plant Hormones in Crop Improvement, eds. Khan MIR, Singh A, Poór P. Netherlands: Elsevier. pp. 65–88. https://doi.org/10.1016/b978-0-323-91886-2.00002-1
|
[113]
|
Liu J, Shi X, Chang Z, Ding Y, Ding C. 2022. Auxin efflux transporters OsPIN1c and OsPIN1d function redundantly in regulating rice (Oryza sativa L.) panicle development. Plant and Cell Physiology 63(3):305−16 doi: 10.1093/pcp/pcab172
CrossRef Google Scholar
|
[114]
|
Zhao Z, Tang S, Li W, Yang X, Wang R, et al. 2021. Overexpression of a BRASSINAZOLE RESISTANT 1 homolog attenuates drought tolerance by suppressing the expression of PLETHORA-LIKE 1 in Setaria italica. The Crop Journal 9(5):1208−1213 doi: 10.1016/j.cj.2021.02.006
CrossRef Google Scholar
|
[115]
|
Yu G, Gaoyang Y, Liu L, Shoaib N, Deng Y, et al. 2022. The structure, function, and regulation of starch synthesis enzymes SSIII with emphasis on maize. Agronomy 12(6):1359 doi: 10.3390/agronomy12061359
CrossRef Google Scholar
|
[116]
|
Jeon JS, Ryoo N, Hahn TR, Walia H, Nakamura Y. 2010. Starch biosynthesis in cereal endosperm. Plant Physiology and Biochemistry 48(6):383−92 doi: 10.1016/j.plaphy.2010.03.006
CrossRef Google Scholar
|
[117]
|
Smith AM. 2012. Starch in the Arabidopsis plant. Starch 64(6):421−34 doi: 10.1002/star.201100163
CrossRef Google Scholar
|
[118]
|
Fukunaga K, Kawase M, Kato K. 2002. Structural variation in the Waxy gene and differentiation in foxtail millet [Setaria italica (L.) P. Beauv.]: implications for multiple origins of the waxy phenotype. Molecular Genetics and Genomics 268(2):214−22 doi: 10.1007/s00438-002-0728-8
CrossRef Google Scholar
|
[119]
|
Van K, Onoda S, Kim MY, Kim KD, Lee SH. 2008. Allelic variation of the Waxy gene in foxtail millet [Setaria italica (L.) P. Beauv.] by single nucleotide polymorphisms. Molecular Genetics and Genomics 279(3):255−66 doi: 10.1007/s00438-007-0310-5
CrossRef Google Scholar
|
[120]
|
Yang Q, Yuan Y, Liu J, Han M, Li J, et al. 2023. Transcriptome analysis reveals new insights in the starch biosynthesis of non-waxy and waxy broomcorn millet (Panicum miliaceum L.). International Journal of Biological Macromolecules 230:123155 doi: 10.1016/j.ijbiomac.2023.123155
CrossRef Google Scholar
|
[121]
|
Wu Y, Holding DR, Messing J. 2010. γ-Zeins are essential for endosperm modification in quality protein maize. Proceedings of the National Academy of Sciences of the United States of America 107:12810−15 doi: 10.1073/pnas.1004721107
CrossRef Google Scholar
|
[122]
|
Zhang Z, Yang J, Wu Y. 2015. Transcriptional regulation of zein gene expression in maize through the additive and synergistic action of opaque2, Prolamine-box binding factor, and O2 heterodimerizing proteins. The Plant Cell 27(4):1162−72 doi: 10.1105/tpc.15.00035
CrossRef Google Scholar
|
[123]
|
Liu CN, Rubenstein I. 1993. Transcriptional characterization of an α-zein gene cluster in maize. Plant Molecular Biology 22(2):323−36 doi: 10.1007/BF00014939
CrossRef Google Scholar
|
[124]
|
Song R, Segal G, Messing J. 2004. Expression of the sorghum 10-member kafirin gene cluster in maize endosperm. Nucleic Acids Research 32(22):e189 doi: 10.1093/nar/gnh183
CrossRef Google Scholar
|
[125]
|
He L, Cheng L, Wang J, Liu J, Cheng J, et al. 2022. Carotenoid Cleavage Dioxygenase 1 catalyzes lutein degradation to influence carotenoid accumulation and color development in foxtail millet grains. Journal of Agricultural and Food Chemistry 70(30):9283−94 doi: 10.1021/acs.jafc.2c01951
CrossRef Google Scholar
|