[1]

Wan XC, Xia T. 2015. Secondary metabolism of tea plant. Science Press: Beijing, China (in Chinese).

[2]

Gui J, Fu X, Zhou Y, Katsuno T, Mei X, et al. 2015. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacuring process? Journal of Agricultural and Food Chemistry 63:6905−14

doi: 10.1021/acs.jafc.5b02741
[3]

Zeng L, Zhou Y, Gui J, Fu X, Mei X, et al. 2016. Formation of volatile tea constituent indole during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry 64:5011−19

doi: 10.1021/acs.jafc.6b01742
[4]

Zhou Y, Zeng L, Hou X, Liao Y, Yang Z. 2020. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany 71(6):2172−85

doi: 10.1093/jxb/erz570
[5]

Erb M, Veyrat N, Robert CAM, Xu H, Frey M, et al. 2015. Indole is an essential herbivore-induced volatile priming signal in maize. Nature Communications 6:6273

doi: 10.1038/ncomms7273
[6]

Cardoza YJ, Lait CG, Schmelz EA, Huang J, Tumlinson JH. 2003. Fungus-induced biochemical changes in peanut plants and their effect on development of beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae) larvae. Environmental Entomology 32:220−28

doi: 10.1603/0046-225X-32.1.220
[7]

Zhuang X, Fiesselmann A, Zhao N, Chen H, Frey M, et al. 2012. Biosynthesis and emission of insect herbivory-induced volatile indole in rice. Phytochemistry 73:15−22

doi: 10.1016/j.phytochem.2011.08.029
[8]

Heil M, Karban R. 2010. Explaining evolution of plant communication by airborne signals. Trends in Ecology & Evolution 25:137−44

doi: 10.1016/j.tree.2009.09.010
[9]

Cai XM, Sun XL, Dong WX, Wang GC, Chen ZM. 2014. Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Chemoecology 24:1−14

doi: 10.1007/s00049-013-0141-2
[10]

Ye M, Liu M, Erb M, Glauser G, Zhang J, et al. 2021. Indole primes defence signalling and increases herbivore resistance in tea plants. Plant, Cell & Environment 44:1165−77

doi: 10.1111/pce.13897
[11]

Zeng L, Watanabe N, Yang Z. 2019. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition 59:2321−34

doi: 10.1080/10408398.2018.1506907
[12]

Jian G, Jia Y, Li J, Zhou X, Liao Y, et al. 2021. Elucidation of the regular emission mechanism of volatile β-ocimene with anti-insect function from tea plants (Camellia Sinensis) exposed to herbivore attack. Journal of Agricultural and Food Chemistry 69:11204−15

doi: 10.1021/acs.jafc.1c03534
[13]

Chen H, Zou Y, Shang Y, Lin H, Wang Y, et al. 2008. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiology 146:368−76

doi: 10.1104/pp.107.111740
[14]

Yang J, Zhou X, Wu S, Gu D, Zeng L, et al. 2021. Involvement of DNA methylation in regulating the accumulation of the aroma compound indole in tea (Camellia sinensis) leaves during postharvest processing. Food research International 142:110183

doi: 10.1016/j.foodres.2021.110183
[15]

War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, et al. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7:1306−20

doi: 10.4161/psb.21663
[16]

Wang L, Erb M. 2022. Volatile uptake, transport, perception, and signaling shape a plant's nose. Essays in Biochemistry 66:695−702

doi: 10.1042/EBC20210092
[17]

Heil M, Silva Bueno JC. 2007. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proceedings of the National Academy of Sciences of the United States of America 104:5467−72

doi: 10.1073/pnas.0610266104
[18]

Pichersky E, Gershenzon J. 2002. The formation and function of plant volatiles, perfumes for pollinator attraction and defense. Current Opinion in Plant Biology 5:237−43

doi: 10.1016/S1369-5266(02)00251-0
[19]

Kessler A, Baldwin IT. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141−44

doi: 10.1126/science.291.5511.2141
[20]

Jing T, Zhang N, Gao T, Zao M, Jin J, et al. 2019. Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: a case study in Camellia sinensis. Plant, Cell & Environment 42:1352−67

doi: 10.1111/pce.13479
[21]

Turlings TCJ, Erb M. 2018. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annual Review of Entomology 63:433−52

doi: 10.1146/annurev-ento-020117-043507
[22]

Jing T, Du W, Gao T, Wu Y, Zhang N, et al. 2021. Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. Plant, Cell & Environment 44:1178−91

doi: 10.1111/pce.13861
[23]

Zhang J, Xing Y, Han T, Yu G, Sun X. 2022. Research progress of induced defense against insect pests in tea plant (Camellia sinensis). Acta Entomologica Sinica 65(3):399−408

doi: 10.16380/j.kcxb.2022.03.014
[24]

Brosset A, Blande JD. 2022. Volatile-mediated plant-plant interactions: volatile organic compounds as modulators of receiver plant defence, growth, and reproduction. Journal of Experimental Botany 73:511−28

doi: 10.1093/jxb/erab487
[25]

Hu L, Ye M, Erb M. 2019. Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance. Plant, Cell & Environment 42:959−71

doi: 10.1111/pce.13443
[26]

Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J, et al. 2011. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiology 157:317−27

doi: 10.1104/pp.111.180224
[27]

Holopainen JK, Gershenzon J. 2010. Multiple stress factors and the emission of plant VOCs. Trends in Plant Science 15:176−184

doi: 10.1016/j.tplants.2010.01.006
[28]

Wilkinson MJ, Owen SM, Possell M, Hartwell J, Gould P, et al. 2006. Circadian control of isoprene emissions from oil palm (Elaeis guineensis). The Plant Journal 47:960−68

doi: 10.1111/j.1365-313X.2006.02847.x
[29]

Zhang S, Wei J, Guo X, Liu TX, Kang L. 2010. Functional synchronization of biological rhythms in a tritrophic system. PLoS ONE 5:e11064

doi: 10.1371/journal.pone.0011064
[30]

Joo Y, Schuman MC, Goldberg JK, Wissgott A, Kim SG, et al. 2019. Herbivory elicits changes in green leaf volatile production via jasmonate signaling and the circadian clock. Plant, Cell & Environment 42:972−82

doi: 10.1111/pce.13474
[31]

Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC. 2013. Green leaf volatiles: a plant's multifunctional weapon against herbivores and pathogens. International Journal of Molecular Sciences 14:17781−811

doi: 10.3390/ijms140917781
[32]

De Moraes CM, Mescher MC, Tumlinson JH. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577−80

doi: 10.1038/35069058
[33]

McCormick AC, Boeckler GA, Köllner TG, Gershenzon J, Unsicker SB. 2014. The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies. BMC Plant Biology 14:304

doi: 10.1186/s12870-014-0304-5
[34]

Helsper JPFG, Davies JA, Bouwmeester HJ, Krol AF, van Kampen MH. 1998. Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta 207:88−95

doi: 10.1007/s004250050459
[35]

Kolosova N, Gorenstein N, Kish CM, Dudareva N. 2001. Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. The Plant Cell 13:2333−47

doi: 10.1105/tpc.010162
[36]

Fenske MP, Nguyen LP, Horn EK, Riffell JA, Imaizumi T. 2018. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta. Scientific Reports 8:2842

doi: 10.1038/s41598-018-21251-x
[37]

Heil M. 2004. Induction of two indirect defences benefits lima bean (Phaseolus lunatus, Fabaceae) in nature. Journal of Ecology 92:527−36

doi: 10.1111/j.0022-0477.2004.00890.x
[38]

Dudareva N, Klempien A, Muhlemann JK, Kaplan I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198:16−32

doi: 10.1111/nph.12145
[39]

Cai XM, Sun XL, Dong WX, Wang GC, Chen ZM. 2012. Variability and stability of tea weevil-induced volatile emissions from tea plants with different weevil densities, photoperiod and infestation duration. Insect Science 19:507−17

doi: 10.1111/j.1744-7917.2011.01496.x
[40]

Zhou M, Li Q, Wang R. 2016. Current experimental methods for characterizing protein-protein interactions. ChemMedChem 11(8):738−56

doi: 10.1002/cmdc.201500495
[41]

Kriechbaumer V, Weigang L, Fiesselmann A, Letzel T, Frey M, et al. 2008. Characterisation of the tryptophan synthase alpha subunit in maize. BMC Plant Biology 8:44

doi: 10.1186/1471-2229-8-44
[42]

Couée I, Gouesbet G. 2023. Protein-protein interactions in abiotic stress signaling: an overview of biochemical and biophysical methods of characterization. In Plant Abiotic Stress Signaling. Methods in Molecular Biology, ed. Couée I. vol. 2642. New York: Humana. pp. 319−30. https://doi.org/10.1007/978-1-0716-3044-0_17

[43]

Miura K. 2018. An overview of current methods to confirm protein-protein interactions. Protein & Peptide Letters 25(8):728−33

doi: 10.2174/0929866525666180821122240