[1]
|
Wan XC, Xia T. 2015. Secondary metabolism of tea plant. Science Press: Beijing, China (in Chinese).
|
[2]
|
Gui J, Fu X, Zhou Y, Katsuno T, Mei X, et al. 2015. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacuring process? Journal of Agricultural and Food Chemistry 63:6905−14 doi: 10.1021/acs.jafc.5b02741
CrossRef Google Scholar
|
[3]
|
Zeng L, Zhou Y, Gui J, Fu X, Mei X, et al. 2016. Formation of volatile tea constituent indole during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry 64:5011−19 doi: 10.1021/acs.jafc.6b01742
CrossRef Google Scholar
|
[4]
|
Zhou Y, Zeng L, Hou X, Liao Y, Yang Z. 2020. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany 71(6):2172−85 doi: 10.1093/jxb/erz570
CrossRef Google Scholar
|
[5]
|
Erb M, Veyrat N, Robert CAM, Xu H, Frey M, et al. 2015. Indole is an essential herbivore-induced volatile priming signal in maize. Nature Communications 6:6273 doi: 10.1038/ncomms7273
CrossRef Google Scholar
|
[6]
|
Cardoza YJ, Lait CG, Schmelz EA, Huang J, Tumlinson JH. 2003. Fungus-induced biochemical changes in peanut plants and their effect on development of beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae) larvae. Environmental Entomology 32:220−28 doi: 10.1603/0046-225X-32.1.220
CrossRef Google Scholar
|
[7]
|
Zhuang X, Fiesselmann A, Zhao N, Chen H, Frey M, et al. 2012. Biosynthesis and emission of insect herbivory-induced volatile indole in rice. Phytochemistry 73:15−22 doi: 10.1016/j.phytochem.2011.08.029
CrossRef Google Scholar
|
[8]
|
Heil M, Karban R. 2010. Explaining evolution of plant communication by airborne signals. Trends in Ecology & Evolution 25:137−44 doi: 10.1016/j.tree.2009.09.010
CrossRef Google Scholar
|
[9]
|
Cai XM, Sun XL, Dong WX, Wang GC, Chen ZM. 2014. Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Chemoecology 24:1−14 doi: 10.1007/s00049-013-0141-2
CrossRef Google Scholar
|
[10]
|
Ye M, Liu M, Erb M, Glauser G, Zhang J, et al. 2021. Indole primes defence signalling and increases herbivore resistance in tea plants. Plant, Cell & Environment 44:1165−77 doi: 10.1111/pce.13897
CrossRef Google Scholar
|
[11]
|
Zeng L, Watanabe N, Yang Z. 2019. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition 59:2321−34 doi: 10.1080/10408398.2018.1506907
CrossRef Google Scholar
|
[12]
|
Jian G, Jia Y, Li J, Zhou X, Liao Y, et al. 2021. Elucidation of the regular emission mechanism of volatile β-ocimene with anti-insect function from tea plants (Camellia Sinensis) exposed to herbivore attack. Journal of Agricultural and Food Chemistry 69:11204−15 doi: 10.1021/acs.jafc.1c03534
CrossRef Google Scholar
|
[13]
|
Chen H, Zou Y, Shang Y, Lin H, Wang Y, et al. 2008. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiology 146:368−76 doi: 10.1104/pp.107.111740
CrossRef Google Scholar
|
[14]
|
Yang J, Zhou X, Wu S, Gu D, Zeng L, et al. 2021. Involvement of DNA methylation in regulating the accumulation of the aroma compound indole in tea (Camellia sinensis) leaves during postharvest processing. Food research International 142:110183 doi: 10.1016/j.foodres.2021.110183
CrossRef Google Scholar
|
[15]
|
War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, et al. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7:1306−20 doi: 10.4161/psb.21663
CrossRef Google Scholar
|
[16]
|
Wang L, Erb M. 2022. Volatile uptake, transport, perception, and signaling shape a plant's nose. Essays in Biochemistry 66:695−702 doi: 10.1042/EBC20210092
CrossRef Google Scholar
|
[17]
|
Heil M, Silva Bueno JC. 2007. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proceedings of the National Academy of Sciences of the United States of America 104:5467−72 doi: 10.1073/pnas.0610266104
CrossRef Google Scholar
|
[18]
|
Pichersky E, Gershenzon J. 2002. The formation and function of plant volatiles, perfumes for pollinator attraction and defense. Current Opinion in Plant Biology 5:237−43 doi: 10.1016/S1369-5266(02)00251-0
CrossRef Google Scholar
|
[19]
|
Kessler A, Baldwin IT. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141−44 doi: 10.1126/science.291.5511.2141
CrossRef Google Scholar
|
[20]
|
Jing T, Zhang N, Gao T, Zao M, Jin J, et al. 2019. Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: a case study in Camellia sinensis. Plant, Cell & Environment 42:1352−67 doi: 10.1111/pce.13479
CrossRef Google Scholar
|
[21]
|
Turlings TCJ, Erb M. 2018. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annual Review of Entomology 63:433−52 doi: 10.1146/annurev-ento-020117-043507
CrossRef Google Scholar
|
[22]
|
Jing T, Du W, Gao T, Wu Y, Zhang N, et al. 2021. Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. Plant, Cell & Environment 44:1178−91 doi: 10.1111/pce.13861
CrossRef Google Scholar
|
[23]
|
Zhang J, Xing Y, Han T, Yu G, Sun X. 2022. Research progress of induced defense against insect pests in tea plant (Camellia sinensis). Acta Entomologica Sinica 65(3):399−408 doi: 10.16380/j.kcxb.2022.03.014
CrossRef Google Scholar
|
[24]
|
Brosset A, Blande JD. 2022. Volatile-mediated plant-plant interactions: volatile organic compounds as modulators of receiver plant defence, growth, and reproduction. Journal of Experimental Botany 73:511−28 doi: 10.1093/jxb/erab487
CrossRef Google Scholar
|
[25]
|
Hu L, Ye M, Erb M. 2019. Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance. Plant, Cell & Environment 42:959−71 doi: 10.1111/pce.13443
CrossRef Google Scholar
|
[26]
|
Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J, et al. 2011. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiology 157:317−27 doi: 10.1104/pp.111.180224
CrossRef Google Scholar
|
[27]
|
Holopainen JK, Gershenzon J. 2010. Multiple stress factors and the emission of plant VOCs. Trends in Plant Science 15:176−184 doi: 10.1016/j.tplants.2010.01.006
CrossRef Google Scholar
|
[28]
|
Wilkinson MJ, Owen SM, Possell M, Hartwell J, Gould P, et al. 2006. Circadian control of isoprene emissions from oil palm (Elaeis guineensis). The Plant Journal 47:960−68 doi: 10.1111/j.1365-313X.2006.02847.x
CrossRef Google Scholar
|
[29]
|
Zhang S, Wei J, Guo X, Liu TX, Kang L. 2010. Functional synchronization of biological rhythms in a tritrophic system. PLoS ONE 5:e11064 doi: 10.1371/journal.pone.0011064
CrossRef Google Scholar
|
[30]
|
Joo Y, Schuman MC, Goldberg JK, Wissgott A, Kim SG, et al. 2019. Herbivory elicits changes in green leaf volatile production via jasmonate signaling and the circadian clock. Plant, Cell & Environment 42:972−82 doi: 10.1111/pce.13474
CrossRef Google Scholar
|
[31]
|
Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC. 2013. Green leaf volatiles: a plant's multifunctional weapon against herbivores and pathogens. International Journal of Molecular Sciences 14:17781−811 doi: 10.3390/ijms140917781
CrossRef Google Scholar
|
[32]
|
De Moraes CM, Mescher MC, Tumlinson JH. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577−80 doi: 10.1038/35069058
CrossRef Google Scholar
|
[33]
|
McCormick AC, Boeckler GA, Köllner TG, Gershenzon J, Unsicker SB. 2014. The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies. BMC Plant Biology 14:304 doi: 10.1186/s12870-014-0304-5
CrossRef Google Scholar
|
[34]
|
Helsper JPFG, Davies JA, Bouwmeester HJ, Krol AF, van Kampen MH. 1998. Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta 207:88−95 doi: 10.1007/s004250050459
CrossRef Google Scholar
|
[35]
|
Kolosova N, Gorenstein N, Kish CM, Dudareva N. 2001. Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. The Plant Cell 13:2333−47 doi: 10.1105/tpc.010162
CrossRef Google Scholar
|
[36]
|
Fenske MP, Nguyen LP, Horn EK, Riffell JA, Imaizumi T. 2018. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta. Scientific Reports 8:2842 doi: 10.1038/s41598-018-21251-x
CrossRef Google Scholar
|
[37]
|
Heil M. 2004. Induction of two indirect defences benefits lima bean (Phaseolus lunatus, Fabaceae) in nature. Journal of Ecology 92:527−36 doi: 10.1111/j.0022-0477.2004.00890.x
CrossRef Google Scholar
|
[38]
|
Dudareva N, Klempien A, Muhlemann JK, Kaplan I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198:16−32 doi: 10.1111/nph.12145
CrossRef Google Scholar
|
[39]
|
Cai XM, Sun XL, Dong WX, Wang GC, Chen ZM. 2012. Variability and stability of tea weevil-induced volatile emissions from tea plants with different weevil densities, photoperiod and infestation duration. Insect Science 19:507−17 doi: 10.1111/j.1744-7917.2011.01496.x
CrossRef Google Scholar
|
[40]
|
Zhou M, Li Q, Wang R. 2016. Current experimental methods for characterizing protein-protein interactions. ChemMedChem 11(8):738−56 doi: 10.1002/cmdc.201500495
CrossRef Google Scholar
|
[41]
|
Kriechbaumer V, Weigang L, Fiesselmann A, Letzel T, Frey M, et al. 2008. Characterisation of the tryptophan synthase alpha subunit in maize. BMC Plant Biology 8:44 doi: 10.1186/1471-2229-8-44
CrossRef Google Scholar
|
[42]
|
Couée I, Gouesbet G. 2023. Protein-protein interactions in abiotic stress signaling: an overview of biochemical and biophysical methods of characterization. In Plant Abiotic Stress Signaling. Methods in Molecular Biology, ed. Couée I. vol. 2642. New York: Humana. pp. 319−30. https://doi.org/10.1007/978-1-0716-3044-0_17
|
[43]
|
Miura K. 2018. An overview of current methods to confirm protein-protein interactions. Protein & Peptide Letters 25(8):728−33 doi: 10.2174/0929866525666180821122240
CrossRef Google Scholar
|