[1]
|
Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America 115:E4151−E4158 doi: 10.1073/pnas.1719622115
CrossRef Google Scholar
|
[2]
|
Li F, Deng X, Huang Z, Zhao Z, Li C, et al. 2023. Integrated transcriptome and metabolome provide insights into flavonoid biosynthesis in 'P113', a new purple tea of Camellia tachangensis. Beverage Plant Research 3:3 doi: 10.48130/bpr-2023-0003
CrossRef Google Scholar
|
[3]
|
Zhu B, Qiao S, Li M, Cheng H, Ma Q, et al. 2023. Strong biosynthesis and weak catabolism of theanine in new shoots contribute to the high theanine accumulation in Albino/etiolated tea plant (Camellia sinensis). Beverage Plant Research 3:23 doi: 10.48130/bpr-2023-0023
CrossRef Google Scholar
|
[4]
|
Liu X, Cao J, Cheng X, Zhu W, Sun Y, et al. 2023. CsRVE1 promotes seasonal greening of albino Camellia sinensis cv. Huangkui by activating chlorophyll biosynthesis. Tree Physiology 43:1432−1443 doi: 10.1093/treephys/tpad052
CrossRef Google Scholar
|
[5]
|
Xu YX, Yang L, Lei YS, Ju RN, Miao SG, et al. 2022. Integrated transcriptome and amino acid profile analyses reveal novel insights into differential accumulation of theanine in green and yellow tea cultivars. Tree Physiology 42:1501−16 doi: 10.1093/treephys/tpac016
CrossRef Google Scholar
|
[6]
|
Zhang X, Wen B, Zhang Y, Li Y, Yu C, et al. 2022. Transcriptomic and biochemical analysis reveal differential regulatory mechanisms of photosynthetic pigment and characteristic secondary metabolites between high amino acids green-leaf and albino tea cultivars. Scientia Horticulturae 295:110823 doi: 10.1016/j.scienta.2021.110823
CrossRef Google Scholar
|
[7]
|
Deng X, Wu J, Wang T, Dai H, Chen J, et al. 2023. Combined metabolic phenotypes and gene expression profiles revealed the formation of terpene and ester volatiles during white tea withering process. Beverage Plant Research 3:21 doi: 10.48130/bpr-2023-0021
CrossRef Google Scholar
|
[8]
|
Zhang M, Zhao Y, Meng Y, Xiao Y, Zhao J, et al. 2022. PPR proteins in the tea plant (Camellia sinensis) and their potential roles in the leaf color changes. Scientia Horticulturae 293:110745 doi: 10.1016/j.scienta.2021.110745
CrossRef Google Scholar
|
[9]
|
Lu M, Li Y, Jia H, Xi Z, Gao Q, et al. 2022. Integrated proteomics and transcriptome analysis reveal a decreased catechins metabolism in variegated tea leaves. Scientia Horticulturae 295:110824 doi: 10.1016/j.scienta.2021.110824
CrossRef Google Scholar
|
[10]
|
Shen J, Zhang D, Zhou L, Zhang X, Liao J, et al. 2019. Transcriptomic and metabolomic profiling of Camellia sinensis L. cv. 'Suchazao' exposed to temperature stresses reveals modification in protein synthesis and photosynthetic and anthocyanin biosynthetic pathways. Tree Physiology 39:1583−99 doi: 10.1093/treephys/tpz059
CrossRef Google Scholar
|
[11]
|
Xu YX, Chen W, Ma CL, Shen SY, Zhou YY, et al. 2017. Proteome and acetyl-proteome profiling of Camellia sinensis cv. 'Anji Baicha' during periodic albinism reveals alterations in photosynthetic and secondary metabolite biosynthetic pathways. Frontiers in Plant Science 8:2104 doi: 10.3389/fpls.2017.02104
CrossRef Google Scholar
|
[12]
|
Wei K, Yu S, Quan Q, Aktar S, He M, et al. 2022. An integrative analysis of metabolomics, DNA methylation and RNA-Seq data reveals key genes involved in albino tea 'Haishun 2'. Beverage Plant Research 2:2 doi: 10.48130/bpr-2022-0002
CrossRef Google Scholar
|
[13]
|
Tian YN, Zhong RH, Wei JB, Luo HH, Eyal Y, et al. 2021. Arabidopsis CHLOROPHYLLASE protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem II repair. Molecular Plant 14:1149−67 doi: 10.1016/j.molp.2021.04.006
CrossRef Google Scholar
|
[14]
|
Tian Y, Rao S, Li Q, Xu M, Wang A, et al. 2021. The coloring mechanism of a novel golden variety in Populus deltoides based on the RGB color mode. Forestry Research 1:5 doi: 10.48130/fr-2021-0005
CrossRef Google Scholar
|
[15]
|
Chen X, Li J, Yu Y, Kou X, Periakaruppan R, et al. 2022. STAY-GREEN and light-harvesting complex II chlorophyll a/b binding protein are involved in albinism of a novel albino tea germplasm 'Huabai 1'. Scientia Horticulturae 293:110653 doi: 10.1016/j.scienta.2021.110653
CrossRef Google Scholar
|
[16]
|
Liu J, Sun C, Zhai FF, Li Z, Qian Y, et al. 2021. Proteomic insights into the photosynthetic divergence between bark and leaf chloroplasts in Salix matsudana. Tree Physiology 41:2142−52 doi: 10.1093/treephys/tpab055
CrossRef Google Scholar
|
[17]
|
Luo T, Luo S, Araújo WL, Schlicke H, Rothbart M, et al. 2013. Virus-induced gene silencing of pea CHLI and CHLD affects tetrapyrrole biosynthesis, chloroplast development and the primary metabolic network. Plant Physiology and Biochemistry 65:17−26 doi: 10.1016/j.plaphy.2013.01.006
CrossRef Google Scholar
|
[18]
|
Mo Z, Chen Y, Zhai M, Zhu K, Xuan J, et al. 2023. Development and application of a virus-induced gene silencing system for functional genomics in pecan (Carya illinoinensis). Scientia Horticulturae 310:111759 doi: 10.1016/j.scienta.2022.111759
CrossRef Google Scholar
|
[19]
|
Hu B, Liu Z, Haensch R, Mithöfer A, Peters FS, et al. 2023. Diplodia sapinea infection reprograms foliar traits of its pine (Pinus sylvestris L.) host to death. Tree Physiology 43:611−29 doi: 10.1093/treephys/tpac137
CrossRef Google Scholar
|
[20]
|
Wu CJ, Wang J, Zhu J, Ren J, Yang YX, et al. 2022. Molecular characterization of Mg-chelatase CHLI subunit in Pea (Pisum sativum L.). Frontiers in Plant Science 13:821683 doi: 10.3389/fpls.2022.821683
CrossRef Google Scholar
|
[21]
|
Lundqvist J, Elmlund H, Peterson R, Berglund L. 2010. ATP-induced conformational dynamics in the AAA+ motor unit of Magnesium chelatase. Cell Press 18:354−65 doi: 10.1016/j.str.2010.01.001
CrossRef Google Scholar
|
[22]
|
Hao X, Tang H, Wang B, Yue C, Wang L, et al. 2018. Integrative transcriptional and metabolic analyses provide insights into cold spell response mechanisms in young shoots of the tea plant. Tree Physiology 38:1655−71 doi: 10.1093/treephys/tpy038
CrossRef Google Scholar
|
[23]
|
Fan L, Hou Y, Zheng L, Shi H, Liu Z, et al. 2023. Characterization and fine mapping of a yellow leaf gene regulating chlorophyll biosynthesis and chloroplast development in cotton (Gossypium arboreum). Gene 885:147712 doi: 10.1016/j.gene.2023.147712
CrossRef Google Scholar
|
[24]
|
Tian X, Ling Y, Fang L, Du P, Sang X, et al. 2013. Gene cloning and functional analysis of yellow green leaf3 (ygl3) gene during the whole-plant growth stage in rice. Genes & Genomics 35(1):87−93 doi: 10.1007/s13258-013-0069-5
CrossRef Google Scholar
|
[25]
|
Sawers RJH, Viney J, Farmer PR, Bussey RR, Olsefski G, et al. 2006. The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase. Plant Molecular Biology 60(1):95−106 doi: 10.1007/s11103-005-2880-0
CrossRef Google Scholar
|
[26]
|
Liu L, Lin N, Liu X, Yang S, Wang W, et al. 2020. From chloroplast biogenesis to chlorophyll accumulation: the interplay of light and hormones on gene expression in Camellia sinensis cv. Shuchazao leaves. Frontiers in Plant Science 11:256 doi: 10.3389/fpls.2020.00256
CrossRef Google Scholar
|
[27]
|
Yao L, Ding C, Hao X, Zeng J, Yang Y, et al. 2020. CsSWEET1a and CsSWEET17 mediate growth and freezing tolerance by promoting sugar transport across the plasma membrane. Plant & Cell Physiology 61:1669−82 doi: 10.1093/pcp/pcaa091
CrossRef Google Scholar
|
[28]
|
Clough SJ, Bent AF. 2010. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43 doi: 10.1046/j.1365-313x.1998.00343.x
CrossRef Google Scholar
|
[29]
|
Chen W, Zheng C, Yao M, Chen L. 2021. The tea plant CsWRKY26 promotes drought tolerance in transgenic Arabidopsis plants. Beverage Plant Research 1:3 doi: 10.48130/bpr-2021-0003
CrossRef Google Scholar
|
[30]
|
Wendler P, Ciniawsky S, Kock M, Kube S. 2012. Structure and function of the AAA+ nucleotide binding pocket. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1823:2−14 doi: 10.1016/j.bbamcr.2011.06.014
CrossRef Google Scholar
|
[31]
|
Ikegami A, Yoshimura N, Motohashi K, Takahashi S, Romano PGN, et al. 2007. The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. Journal of Biological Chemistry 282:19282−91 doi: 10.1074/jbc.M703324200
CrossRef Google Scholar
|
[32]
|
Du H, Qi M, Cui X, Cui Y, Yang H, et al. 2018. Proteomic and functional analysis of soybean chlorophyll-deficient mutant cd1 and the underlying gene encoding the CHLI subunit of Mg-chelatase. Molecular Breeding 38:71 doi: 10.1007/s11032-018-0819-9
CrossRef Google Scholar
|
[33]
|
Ma YY, Shi JC, Wang DJ,, Liang X, Wei F, et al. 2023. A point mutation in the gene encoding magnesium chelatase I subunit influences strawberry leaf color and metabolism. Plant Physiology 192:2737−55 doi: 10.1093/plphys/kiad247
CrossRef Google Scholar
|
[34]
|
Adams NBP, Bisson C, Brindley AA, Farmer DA, Davison PA, et al. 2020. The active site of magnesium chelatase. Nature Plants 6:1491−1502 doi: 10.1038/s41477-020-00806-9
CrossRef Google Scholar
|
[35]
|
Axelsson E, Lundqvist J, Sawicki A, Nilsson S, Schröder I, et al. 2006. Recessiveness and dominance in barley mutants deficient in Mg-chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis. The Plant Cell 18:3606−3616 doi: 10.1105/tpc.106.042374
CrossRef Google Scholar
|
[36]
|
Chen X, Pu H, Fang Y, Wang X, Zhao S, et al. 2015. Crystal structure of the catalytic subunit of magnesium chelatase. Nature Plants 1:15125 doi: 10.1038/nplants.2015.125
CrossRef Google Scholar
|
[37]
|
Zhang D, Chang E, Yu X, Chen Y, Yang Q, et al. 2018. Molecular characterization of magnesium chelatase in Soybean [Glycine max (L.) Merr.]. Frontiers in Plant Science 9:720 doi: 10.3389/fpls.2018.00720
CrossRef Google Scholar
|
[38]
|
Wang C, Zhang L, Li Y, Ali Buttar Z, Wang N, et al. 2020. Single nucleotide mutagenesis of the TaCHLI gene suppressed chlorophyll and fatty acid biosynthesis in common wheat seedlings. Frontiers in Plant Science 11:97 doi: 10.3389/fpls.2020.00097
CrossRef Google Scholar
|
[39]
|
Gao M, Hu L, Li Y, Weng Y. 2016. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit. Theoretical and Applied Genetics 129:1961−73 doi: 10.1007/s00122-016-2752-9
CrossRef Google Scholar
|