[1]

Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America 115:E4151−E4158

doi: 10.1073/pnas.1719622115
[2]

Li F, Deng X, Huang Z, Zhao Z, Li C, et al. 2023. Integrated transcriptome and metabolome provide insights into flavonoid biosynthesis in 'P113', a new purple tea of Camellia tachangensis. Beverage Plant Research 3:3

doi: 10.48130/bpr-2023-0003
[3]

Zhu B, Qiao S, Li M, Cheng H, Ma Q, et al. 2023. Strong biosynthesis and weak catabolism of theanine in new shoots contribute to the high theanine accumulation in Albino/etiolated tea plant (Camellia sinensis). Beverage Plant Research 3:23

doi: 10.48130/bpr-2023-0023
[4]

Liu X, Cao J, Cheng X, Zhu W, Sun Y, et al. 2023. CsRVE1 promotes seasonal greening of albino Camellia sinensis cv. Huangkui by activating chlorophyll biosynthesis. Tree Physiology 43:1432−1443

doi: 10.1093/treephys/tpad052
[5]

Xu YX, Yang L, Lei YS, Ju RN, Miao SG, et al. 2022. Integrated transcriptome and amino acid profile analyses reveal novel insights into differential accumulation of theanine in green and yellow tea cultivars. Tree Physiology 42:1501−16

doi: 10.1093/treephys/tpac016
[6]

Zhang X, Wen B, Zhang Y, Li Y, Yu C, et al. 2022. Transcriptomic and biochemical analysis reveal differential regulatory mechanisms of photosynthetic pigment and characteristic secondary metabolites between high amino acids green-leaf and albino tea cultivars. Scientia Horticulturae 295:110823

doi: 10.1016/j.scienta.2021.110823
[7]

Deng X, Wu J, Wang T, Dai H, Chen J, et al. 2023. Combined metabolic phenotypes and gene expression profiles revealed the formation of terpene and ester volatiles during white tea withering process. Beverage Plant Research 3:21

doi: 10.48130/bpr-2023-0021
[8]

Zhang M, Zhao Y, Meng Y, Xiao Y, Zhao J, et al. 2022. PPR proteins in the tea plant (Camellia sinensis) and their potential roles in the leaf color changes. Scientia Horticulturae 293:110745

doi: 10.1016/j.scienta.2021.110745
[9]

Lu M, Li Y, Jia H, Xi Z, Gao Q, et al. 2022. Integrated proteomics and transcriptome analysis reveal a decreased catechins metabolism in variegated tea leaves. Scientia Horticulturae 295:110824

doi: 10.1016/j.scienta.2021.110824
[10]

Shen J, Zhang D, Zhou L, Zhang X, Liao J, et al. 2019. Transcriptomic and metabolomic profiling of Camellia sinensis L. cv. 'Suchazao' exposed to temperature stresses reveals modification in protein synthesis and photosynthetic and anthocyanin biosynthetic pathways. Tree Physiology 39:1583−99

doi: 10.1093/treephys/tpz059
[11]

Xu YX, Chen W, Ma CL, Shen SY, Zhou YY, et al. 2017. Proteome and acetyl-proteome profiling of Camellia sinensis cv. 'Anji Baicha' during periodic albinism reveals alterations in photosynthetic and secondary metabolite biosynthetic pathways. Frontiers in Plant Science 8:2104

doi: 10.3389/fpls.2017.02104
[12]

Wei K, Yu S, Quan Q, Aktar S, He M, et al. 2022. An integrative analysis of metabolomics, DNA methylation and RNA-Seq data reveals key genes involved in albino tea 'Haishun 2'. Beverage Plant Research 2:2

doi: 10.48130/bpr-2022-0002
[13]

Tian YN, Zhong RH, Wei JB, Luo HH, Eyal Y, et al. 2021. Arabidopsis CHLOROPHYLLASE protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem II repair. Molecular Plant 14:1149−67

doi: 10.1016/j.molp.2021.04.006
[14]

Tian Y, Rao S, Li Q, Xu M, Wang A, et al. 2021. The coloring mechanism of a novel golden variety in Populus deltoides based on the RGB color mode. Forestry Research 1:5

doi: 10.48130/fr-2021-0005
[15]

Chen X, Li J, Yu Y, Kou X, Periakaruppan R, et al. 2022. STAY-GREEN and light-harvesting complex II chlorophyll a/b binding protein are involved in albinism of a novel albino tea germplasm 'Huabai 1'. Scientia Horticulturae 293:110653

doi: 10.1016/j.scienta.2021.110653
[16]

Liu J, Sun C, Zhai FF, Li Z, Qian Y, et al. 2021. Proteomic insights into the photosynthetic divergence between bark and leaf chloroplasts in Salix matsudana. Tree Physiology 41:2142−52

doi: 10.1093/treephys/tpab055
[17]

Luo T, Luo S, Araújo WL, Schlicke H, Rothbart M, et al. 2013. Virus-induced gene silencing of pea CHLI and CHLD affects tetrapyrrole biosynthesis, chloroplast development and the primary metabolic network. Plant Physiology and Biochemistry 65:17−26

doi: 10.1016/j.plaphy.2013.01.006
[18]

Mo Z, Chen Y, Zhai M, Zhu K, Xuan J, et al. 2023. Development and application of a virus-induced gene silencing system for functional genomics in pecan (Carya illinoinensis). Scientia Horticulturae 310:111759

doi: 10.1016/j.scienta.2022.111759
[19]

Hu B, Liu Z, Haensch R, Mithöfer A, Peters FS, et al. 2023. Diplodia sapinea infection reprograms foliar traits of its pine (Pinus sylvestris L.) host to death. Tree Physiology 43:611−29

doi: 10.1093/treephys/tpac137
[20]

Wu CJ, Wang J, Zhu J, Ren J, Yang YX, et al. 2022. Molecular characterization of Mg-chelatase CHLI subunit in Pea (Pisum sativum L.). Frontiers in Plant Science 13:821683

doi: 10.3389/fpls.2022.821683
[21]

Lundqvist J, Elmlund H, Peterson R, Berglund L. 2010. ATP-induced conformational dynamics in the AAA+ motor unit of Magnesium chelatase. Cell Press 18:354−65

doi: 10.1016/j.str.2010.01.001
[22]

Hao X, Tang H, Wang B, Yue C, Wang L, et al. 2018. Integrative transcriptional and metabolic analyses provide insights into cold spell response mechanisms in young shoots of the tea plant. Tree Physiology 38:1655−71

doi: 10.1093/treephys/tpy038
[23]

Fan L, Hou Y, Zheng L, Shi H, Liu Z, et al. 2023. Characterization and fine mapping of a yellow leaf gene regulating chlorophyll biosynthesis and chloroplast development in cotton (Gossypium arboreum). Gene 885:147712

doi: 10.1016/j.gene.2023.147712
[24]

Tian X, Ling Y, Fang L, Du P, Sang X, et al. 2013. Gene cloning and functional analysis of yellow green leaf3 (ygl3) gene during the whole-plant growth stage in rice. Genes & Genomics 35(1):87−93

doi: 10.1007/s13258-013-0069-5
[25]

Sawers RJH, Viney J, Farmer PR, Bussey RR, Olsefski G, et al. 2006. The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase. Plant Molecular Biology 60(1):95−106

doi: 10.1007/s11103-005-2880-0
[26]

Liu L, Lin N, Liu X, Yang S, Wang W, et al. 2020. From chloroplast biogenesis to chlorophyll accumulation: the interplay of light and hormones on gene expression in Camellia sinensis cv. Shuchazao leaves. Frontiers in Plant Science 11:256

doi: 10.3389/fpls.2020.00256
[27]

Yao L, Ding C, Hao X, Zeng J, Yang Y, et al. 2020. CsSWEET1a and CsSWEET17 mediate growth and freezing tolerance by promoting sugar transport across the plasma membrane. Plant & Cell Physiology 61:1669−82

doi: 10.1093/pcp/pcaa091
[28]

Clough SJ, Bent AF. 2010. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43

doi: 10.1046/j.1365-313x.1998.00343.x
[29]

Chen W, Zheng C, Yao M, Chen L. 2021. The tea plant CsWRKY26 promotes drought tolerance in transgenic Arabidopsis plants. Beverage Plant Research 1:3

doi: 10.48130/bpr-2021-0003
[30]

Wendler P, Ciniawsky S, Kock M, Kube S. 2012. Structure and function of the AAA+ nucleotide binding pocket. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1823:2−14

doi: 10.1016/j.bbamcr.2011.06.014
[31]

Ikegami A, Yoshimura N, Motohashi K, Takahashi S, Romano PGN, et al. 2007. The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. Journal of Biological Chemistry 282:19282−91

doi: 10.1074/jbc.M703324200
[32]

Du H, Qi M, Cui X, Cui Y, Yang H, et al. 2018. Proteomic and functional analysis of soybean chlorophyll-deficient mutant cd1 and the underlying gene encoding the CHLI subunit of Mg-chelatase. Molecular Breeding 38:71

doi: 10.1007/s11032-018-0819-9
[33]

Ma YY, Shi JC, Wang DJ,, Liang X, Wei F, et al. 2023. A point mutation in the gene encoding magnesium chelatase I subunit influences strawberry leaf color and metabolism. Plant Physiology 192:2737−55

doi: 10.1093/plphys/kiad247
[34]

Adams NBP, Bisson C, Brindley AA, Farmer DA, Davison PA, et al. 2020. The active site of magnesium chelatase. Nature Plants 6:1491−1502

doi: 10.1038/s41477-020-00806-9
[35]

Axelsson E, Lundqvist J, Sawicki A, Nilsson S, Schröder I, et al. 2006. Recessiveness and dominance in barley mutants deficient in Mg-chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis. The Plant Cell 18:3606−3616

doi: 10.1105/tpc.106.042374
[36]

Chen X, Pu H, Fang Y, Wang X, Zhao S, et al. 2015. Crystal structure of the catalytic subunit of magnesium chelatase. Nature Plants 1:15125

doi: 10.1038/nplants.2015.125
[37]

Zhang D, Chang E, Yu X, Chen Y, Yang Q, et al. 2018. Molecular characterization of magnesium chelatase in Soybean [Glycine max (L.) Merr.]. Frontiers in Plant Science 9:720

doi: 10.3389/fpls.2018.00720
[38]

Wang C, Zhang L, Li Y, Ali Buttar Z, Wang N, et al. 2020. Single nucleotide mutagenesis of the TaCHLI gene suppressed chlorophyll and fatty acid biosynthesis in common wheat seedlings. Frontiers in Plant Science 11:97

doi: 10.3389/fpls.2020.00097
[39]

Gao M, Hu L, Li Y, Weng Y. 2016. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit. Theoretical and Applied Genetics 129:1961−73

doi: 10.1007/s00122-016-2752-9