[1]
|
Bernard SM, Habash DZ. 2009. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist 182:608−20 doi: 10.1111/j.1469-8137.2009.02823.x
CrossRef Google Scholar
|
[2]
|
Kissen R, Winge P, Tran DHT, Jørstad TS, Størseth TR, et al. 2010. Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome. BMC Genomics 11:190 doi: 10.1186/1471-2164-11-190
CrossRef Google Scholar
|
[3]
|
Lea PJ, Miflin BJ. 1974. Alternative route for nitrogen assimilation in higher plants. Nature 251:614−16 doi: 10.1038/251614a0
CrossRef Google Scholar
|
[4]
|
Swarbreck SM, Defoin-Platel M, Hindle M, Saqi M, Habash DZ. 2011. New perspectives on glutamine synthetase in grasses. Journal of Experimental Botany 62:1511−22 doi: 10.1093/jxb/erq356
CrossRef Google Scholar
|
[5]
|
Wang Y, Wang YM, Lu YT, Qiu QL, Fan DM, et al. 2021. Influence of different nitrogen sources on carbon and nitrogen metabolism and gene expression in tea plants (Camellia sinensis L.). Plant Physiology and Biochemistry 167:561−66 doi: 10.1016/j.plaphy.2021.08.034
CrossRef Google Scholar
|
[6]
|
Ma L, Jiang S, Deng M, Lv L, Xu Z, et al. 2021. Thermo condition determines the uptake of autumn and winter applied nitrogen and subsequent utilization in spring tea (Camellia sinensis L.). Horticulturae 7(12):544 doi: 10.3390/horticulturae7120544
CrossRef Google Scholar
|
[7]
|
Liu MY, Tang DD, Shi YZ, Ma LF, Zhang QF, et al. 2021. Foliar N application on tea plant at its dormancy stage increases the N concentration of mature leaves and improves the quality and yield of spring tea. Frontiers in Plant Science 12:753086 doi: 10.3389/fpls.2021.753086
CrossRef Google Scholar
|
[8]
|
Zhu W, Liu X, Cheng X, Li Y, Liu L. 2023. Shading effects revisited: Comparisons of spring and autumn shading treatments reveal a seasonal-dependent regulation on amino acids in tea leaves. Beverage Plant Research 3:5 doi: 10.48130/bpr-2023-0005
CrossRef Google Scholar
|
[9]
|
Ruan L, Wei K, Li JW, He M, Wu L, et al. 2022. Responses of tea plants (Camellia sinensis) with different low-nitrogen tolerances during recovery from nitrogen deficiency. Journal of the Science of Food and Agriculture 102:1405−14 doi: 10.1002/jsfa.11473
CrossRef Google Scholar
|
[10]
|
Tang D, Liu M, Fan K, Ruan J. 2017. Research progress of nitrogen utilization and assimilation in tea plant. Acta Horticulturae Sinica 44(9):1759−71 doi: 10.16420/j.issn.0513-353x.2017-0335
CrossRef Google Scholar
|
[11]
|
Liu MY, Tang D, Shi Y, Ma L, Li Y, et al. 2019. Short-term inhibition of glutamine synthetase leads to reprogramming of amino acid and lipid metabolism in roots and leaves of tea plant (Camellia sinensis L.). BMC Plant Biology 19:425 doi: 10.1186/s12870-019-2027-0
CrossRef Google Scholar
|
[12]
|
Fischer JJ, Beatty PH, Good AG, Muench DG. 2013. Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Science 210:70−81 doi: 10.1016/j.plantsci.2013.05.009
CrossRef Google Scholar
|
[13]
|
Tiwari JK, Buckseth T, Zinta R, Saraswati A, Singh RK, et al. 2020. Genome-wide identification and characterization of microRNAs by small RNA sequencing for low nitrogen stress in potato. PLoS ONE 15:e233076 doi: 10.1371/journal.pone.0233076
CrossRef Google Scholar
|
[14]
|
Liu D, Song Y, Chen Z, Yu D. 2009. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiologia Plantarum 136:223−36 doi: 10.1111/j.1399-3054.2009.01229.x
CrossRef Google Scholar
|
[15]
|
Che R, Tong H, Shi B, Liu Y, Fang S, et al. 2016. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants 2:15195 doi: 10.1038/nplants.2015.195
CrossRef Google Scholar
|
[16]
|
Duan P, Ni S, Wang J, Zhang B, Xu R, et al. 2016. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants 2:15203 doi: 10.1038/nplants.2015.203
CrossRef Google Scholar
|
[17]
|
Gao F, Wang K, Liu Y, Chen Y, Chen P, er al. 2016. Blocking miR396 increases rice yield by shaping inflorescence architecture. Nature Plants 2:15196 doi: 10.1038/nplants.2015.196
CrossRef Google Scholar
|
[18]
|
Chandran V, Wang H, Gao F, Cao XL, Chen YP, et al. 2019. miR396-OsGRFsmodule balances growth and rice blast disease-resistance. Frontiers of Plant Science 9:1999 doi: 10.3389/fpls.2018.01999
CrossRef Google Scholar
|
[19]
|
Dai Z, Tan J, Zhou C, Yang X, Yang F, et al. 2019. The OsmiR396-OsGRF8-OsF3H-flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa). Plant Biotechnology Journal 17:1657−69 doi: 10.1111/pbi.13091
CrossRef Google Scholar
|
[20]
|
Zhou CZ, Tian CY, Zhu C, Lai ZX, Lin YL, et al. 2022. Hidden players in the regulation of secondary metabolism in tea plant: focus on non-coding RNAs. Beverage Plant Research 2:19 doi: 10.48130/bpr-2022-0019
CrossRef Google Scholar
|
[21]
|
Li H, Lin Q, Yan M, Wang M, Wang P, et al. 2021. Relationship between secondary metabolism and miRNA for important flavor compounds in different tissues of tea plant (Camellia sinensis) as revealed by genome-wide miRNA analysis. Journal of Agricultural and Food Chemistry 69:2001−12 doi: 10.1021/acs.jafc.0c07440
CrossRef Google Scholar
|
[22]
|
Li H, Guo L, Yan M, Hu J, Lin Q, et al. 2022. A rapid and efficient transient expression system for gene function and subcellular localization studies in the tea plant (Camellia sinensis) leaves. Scientia Horticulturae 297:110927 doi: 10.1016/j.scienta.2022.110927
CrossRef Google Scholar
|
[23]
|
Liu Y, Wang L, Cheng D, Wu X, Huang D, et al. 2014. Genome-wide comparison of microRNAs and their targeted transcripts among leaf, flower and fruit of sweet orange. BMC Genomics 15:695 doi: 10.1186/1471-2164-15-695
CrossRef Google Scholar
|
[24]
|
Zheng G, Wei W, Li Y, Kan L, Wang F, et al. 2019. Conserved and novel roles of miR164-CUC2 regulatory module in specifying leaf and floral organ morphology in strawberry. New Phytologist 224:480−92 doi: 10.1111/nph.15982
CrossRef Google Scholar
|
[25]
|
Zhang XR, Henriques R, Lin SS, Niu QW, Chua NH. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1:641−46 doi: 10.1038/nprot.2006.97
CrossRef Google Scholar
|
[26]
|
Chen W, Zheng C, Yao M, Chen L. 2021. The tea plant CsWRKY26 promotes drought tolerance in transgenic Arabidopsis plants. Beverage Plant Research 1:3 doi: 10.48130/bpr-2021-0003
CrossRef Google Scholar
|
[27]
|
She G, Yu S, Li Z, Peng A, Li P, et al. 2022. Characterization of CsTSI in the biosynthesis of theanine in tea plants (Camellia sinensis). Journal of Agricultural and Food Chemistry 70:826−836 doi: 10.1021/acs.jafc.1c04816
CrossRef Google Scholar
|
[28]
|
Liu H, Yu H, Tang G, Huang T. 2018. Small but powerful: function of microRNAs in plant development. Plant Cell Reports 37:515−28 doi: 10.1007/s00299-017-2246-5
CrossRef Google Scholar
|
[29]
|
Liu H, Guo S, Xu Y, Li C, Zhang Z, et al. 2014. OsmiR396d-Regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiology 165:160−174 doi: 10.1104/pp.114.235564
CrossRef Google Scholar
|
[30]
|
Chen YP, Dan ZW, Gao F, Chen P, Fan FF, et al. 2020. Rice GROWTH-REGULATING FACTOR7 modulates plant architecture through regulating GA and indole-3-Acetic acid metabolism. Plant Physiology 184:393−406 doi: 10.1104/pp.20.00302
CrossRef Google Scholar
|
[31]
|
Debernardi JM, Rodriguez RE, Mecchia MA, Palatnik JF. 2012. Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions. PLoS Genetics 8:e1002419 doi: 10.1371/journal.pgen.1002419
CrossRef Google Scholar
|
[32]
|
Giacomelli JI, Weigel D, Chan RL Manavella PA. 2012. Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage. New phytologist 195:766−73 doi: 10.1111/j.1469-8137.2012.04259.x
CrossRef Google Scholar
|
[33]
|
Wang J, Chen W, Wang H, Li Y, Wang B, et al. 2021. Transcription factor CsDOF regulates glutamine metabolism in tea plants (Camellia sinensis). Plant Science 302:110720 doi: 10.1016/j.plantsci.2020.110720
CrossRef Google Scholar
|
[34]
|
Yu Y, Kou X, Gao R, Chen X, Zhao Z, et al. 2021. Glutamine synthetases play a vital role in high accumulation of theanine in tender shoots of albino tea germplasm "Huabai 1". Journal of Agricultural and Food Chemistry 69:13904−15 doi: 10.1021/acs.jafc.1c04567
CrossRef Google Scholar
|
[35]
|
Wen B, Luo Y, Liu D, Zhang X, Peng Z, et al. 2020. The R2R3-MYB transcription factor CsMYB73 negatively regulates ʟ-Theanine biosynthesis in tea plants (Camellia sinensis L.). Plant Science 298:110546 doi: 10.1016/j.plantsci.2020.110546
CrossRef Google Scholar
|
[36]
|
Fu X, Liao Y, Cheng S, Xu X, Grierson D, et al. 2021. Nonaqueous fractionation and overexpression of fluorescent-tagged enzymes reveals the subcellular sitesof ʟ-theanine biosynthesis in tea. Plant Biotechnology Journal 19:98−108 doi: 10.1111/pbi.13445
CrossRef Google Scholar
|