[1]
|
dos Santos TB, Budzinski IGF, Marur CJ, Petkowicz CLO, Pereira LFP, et al. 2011. Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiology and Biochemistry 49(4):441−48 doi: 10.1016/j.plaphy.2011.01.023
CrossRef Google Scholar
|
[2]
|
Jeyaraj A, Liu S, Zhang X, Zhang R, Shangguan M, et al. 2017. Genome-wide identification of microRNAs responsive to Ectropis oblique feeding in tea plant (Camellia sinensis L.). Scientific Reports 7:13634 doi: 10.1038/s41598-017-13692-7
CrossRef Google Scholar
|
[3]
|
Fuchs B, Krauss J. 2019. Can Epichloë endophytes enhance direct and indirect plant defence? Fungal Ecology 38:98−103 doi: 10.1016/j.funeco.2018.07.002
CrossRef Google Scholar
|
[4]
|
Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD. 2016. Designer lignins: harnessing the plasticity of lignification. Current Opinion in Biotechnology 37:190−200 doi: 10.1016/j.copbio.2015.10.009
CrossRef Google Scholar
|
[5]
|
Li L, Hao R, Yang X, Feng Y, Bi Z. 2023. Piriformospora indica increases resistance to Fusarium pseudograminearum in wheat by inducing phenylpropanoid pathway. International Journal of Molecular Sciences 24:8797 doi: 10.3390/ijms24108797
CrossRef Google Scholar
|
[6]
|
Miao YC, Liu CJ. 2010. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. Proceedings of the National Academy of Sciences of the United States of America 107:22728−33 doi: 10.1073/pnas.1007747108
CrossRef Google Scholar
|
[7]
|
del Río JC, Rencoret J, Gutiérrez A, Lan W, Kim H, et al. 2021. Lignin monomers derived from the flavonoid and hydroxystilbene biosynthetic pathways. In Recent advances in polyphenol research, eds. Reed JD, de Freitas VAP, Quideau S. Vol. 7. UK: John Wiley & Sons. pp. 177-206. https://doi.org/10.1002/9781119545958.ch7
|
[8]
|
del Río JC, Rencoret J, Gutiérrez A, Elder T, Kim H, et al. 2020. Lignin monomers from beyond the canonical monolignol biosynthetic pathway: another brick in the wall. ACS Sustainable Chemistry & Engineering 8:4997−5012 doi: 10.1021/acssuschemeng.0c01109
CrossRef Google Scholar
|
[9]
|
Liu N, Wang Y, Li K, Li C, Liu B, et al. 2023. Transcriptional analysis of tea plants (Camellia sinensis) in response to salicylic acid treatment. Journal of Agricultural and Food Chemistry 71:2377−89 doi: 10.1021/acs.jafc.2c07046
CrossRef Google Scholar
|
[10]
|
Cheng S, Yan J, Meng X, Zhang W, Liao Y, et al. 2018. Characterization and expression patterns of a cinnamate-4-hydroxylase gene involved in lignin biosynthesis and in response to various stresses and hormonal treatments in Ginkgo biloba. Acta physiologiae plantarum 40:7 doi: 10.1007/s11738-017-2585-4
CrossRef Google Scholar
|
[11]
|
Ponniah SK, Shang Z, Akbudak MA, Srivastava V, Manoharan M. 2017. Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase, cinnamoyl CoA reductase, and cinnamyl alcohol dehydrogenase leads to lignin reduction in rice (Oryza sativa L. ssp. japonica cv. Nipponbare). Plant Biotechnology Reports 11:17−27 doi: 10.1007/s11816-017-0426-y
CrossRef Google Scholar
|
[12]
|
Liu W, Jin Y, Li M, Dong L, Guo D, et al. 2018. Analysis of CmCADs and three lignifying enzymes in oriental melon ('CaiHong7') seedlings in response to three abiotic stresses. Scientia Horticulturae 237:257−68 doi: 10.1016/j.scienta.2018.04.024
CrossRef Google Scholar
|
[13]
|
Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, et al. 2011. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. The Plant Cell 23:1124−37 doi: 10.1105/tpc.110.082792
CrossRef Google Scholar
|
[14]
|
Yu Y, Xing Y, Liu F, Zhang X, Li X, et al. 2021. The laccase gene family mediate multi-perspective trade-offs during tea plant (Camellia sinensis) development and defense processes. International Journal of Molecular Sciences 22:12554 doi: 10.3390/ijms222212554
CrossRef Google Scholar
|
[15]
|
Wang YN, Tang L, Hou Y, Wang P, Yang H, et al. 2016. Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Functional & Integrative Genomics 16:383−98 doi: 10.1007/s10142-016-0491-2
CrossRef Google Scholar
|
[16]
|
Tian Y, Zhao Y, Zhang L, Mu W, Zhang Z. 2018. Morphological, physiological, and biochemical responses of two tea cultivars to Empoasca onukii (Hemiptera: Cicadellidae) infestation. Journal of economic entomology 111:899−908 doi: 10.1093/jee/toy011
CrossRef Google Scholar
|
[17]
|
Wang Z, Huang R, Moon DG, Ercisli S, Chen L. 2023. Achievements and prospects of QTL mapping and beneficial genes and alleles mining for important quality and agronomic traits in tea plant (Camellia sinensis). Beverage Plant Research 3:22 doi: 10.48130/bpr-2023-0022
CrossRef Google Scholar
|
[18]
|
Zhang X, Liu L, Luo S, Ye X, Wen W. 2023. Research advances in aluminum tolerance and accumulation in tea plant (Camellia sinensis). Beverage Plant Research 3:18 doi: 10.48130/BPR-2023-0018
CrossRef Google Scholar
|
[19]
|
Zhou Y, Liu Y, Wang S, Shi C, Zhang R, et al. 2017. Molecular cloning and characterization of galactinol synthases in Camellia sinensis with different responses to biotic and abiotic stressors. Journal of Agricultural and Food Chemistry 65:2751−59 doi: 10.1021/acs.jafc.7b00377
CrossRef Google Scholar
|
[20]
|
Qiao D, Yang C, Guo Y, Chen J, Chen Z. 2023. Transcriptome and co-expression network analysis uncover the key genes mediated by endogenous defense hormones in tea plant in response to the infestation of Empoasca onukii Matsuda. Beverage Plant Research 3:4 doi: 10.48130/BPR-2023-0004
CrossRef Google Scholar
|
[21]
|
Zhang Z, Luo Z, Gao Y, Bian L, Sun X, et al. 2014. Volatiles from non-host aromatic plants repel tea green leafhopper Empoasca vitis. Entomologia Experimentalis et Applicata 153:156−69 doi: 10.1111/eea.12236
CrossRef Google Scholar
|
[22]
|
Zhang Z, Zhou C, Xu Y, Huang X, Zhang L, et al. 2017. Effects of intercropping tea with aromatic plants on population dynamics of arthropods in Chinese tea plantations. Journal of Pest Science 90:227−37 doi: 10.1007/s10340-016-0783-2
CrossRef Google Scholar
|
[23]
|
Jin S, Chen ZM, Backus EA, Sun XL, Xiao B. 2012. Characterization of EPG waveforms for the tea green leafhopper, Empoasca vitis Göthe (Hemiptera: Cicadellidae), on tea plants and their correlation with stylet activities. Journal of Insect Physiology 58:1235−44 doi: 10.1016/j.jinsphys.2012.06.008
CrossRef Google Scholar
|
[24]
|
Wu LJ, Li F, Song Y, Zhang ZF, Fan YL, et al. 2023. Proteome analysis of male accessory gland secretions in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Insects 4:132 doi: 10.3390/insects14020132
CrossRef Google Scholar
|
[25]
|
Rahul K, Makwana P, Ghosh S, Pappachan A. 2023. Why Biotechnology Needed in Insects?. In Introduction to Insect Biotechnology, eds. Kumar D, Shukla S. Netherlands: Springer, Cham. pp. 17−44. https://doi.org/10.1007/978-3-031-26776-5_2
|
[26]
|
Zhang J, Zhang L, Qiu J, Nian H. 2015. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of Cryptococcus humicola response to aluminum stress. Journal of Bioscience and Bioengineering 120:359−63 doi: 10.1016/j.jbiosc.2015.02.007
CrossRef Google Scholar
|
[27]
|
Sun XY, Liu QH, Huang J. 2018. iTRAQ-based quantitative proteomic analysis of differentially expressed proteins in Litopenaeus vannamei in response to infection with WSSV strains varying in virulence. Letters in applied microbiology 67:113−22 doi: 10.1111/lam.13004
CrossRef Google Scholar
|
[28]
|
McAuslane HJ, Chen J, Carle RB, Schmalstig J. 2004. Influence of Bemisia argentifolii (Homoptera: Aleyrodidae) infestation and squash silverleaf disorder on zucchini seedling growth. Journal of economic entomology 97(3):1096−105 doi: 10.1093/jee/97.3.1096
CrossRef Google Scholar
|
[29]
|
Li Q, Tan W, Xue M, Zhao H, Wang C. 2013. Dynamic changes in photosynthesis and chlorophyll fluorescence in Nicotiana tabacum infested by Bemisia tabaci (Middle East-Asia Minor 1) nymphs. Arthropod-Plant Interactions 7:431−43 doi: 10.1007/s11829-013-9260-5
CrossRef Google Scholar
|
[30]
|
Wang W, Vignani R, Scali M, Cresti M. 2006. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782−86 doi: 10.1002/elps.200500722
CrossRef Google Scholar
|
[31]
|
Miao J, Han B. 2007. Probing behavior of the tea green leafhopper on different tea plant cultivars. Acta Ecologica Sinica 27:3973−82 doi: 10.1016/S1872-2032(07)60083-3
CrossRef Google Scholar
|
[32]
|
Chen ZM, Sun XL, Dong WX. 2012. Genetics and chemistry of the resistance of tea plant to pests. In Global tea breeding: Achievements, challenges and perspectives. Berlin, Heidelberg: Springer. pp. 343−60. https://doi.org/10.1007/978-3-642-31878-8_13
|
[33]
|
Wu X, Yan J, Wu Y, Zhang H, Mo S, et al. 2019. Proteomic analysis by iTRAQ-PRM provides integrated insight into mechanisms of resistance in pepper to Bemisia tabaci (Gennadius). BMC Plant Biology 19:270 doi: 10.1186/s12870-019-1849-0
CrossRef Google Scholar
|
[34]
|
Chatterjee A, Pandey S, Singh PK, Pathak NP, Rai N, et al. 2015. Biochemical and functional characterizations of tyrosine phosphatases from pathogenic and nonpathogenic mycobacteria: indication of phenyl cyclopropyl methyl-/phenyl butenyl azoles as tyrosine phosphatase inhibitors. Applied Microbiology and Biotechnology 99:7539−48 doi: 10.1007/s00253-015-6502-8
CrossRef Google Scholar
|
[35]
|
Zhang X, Yin F, Xiao S, Jiang C, Yu T, et al. 2019. Proteomic analysis of the rice (Oryza officinalis) provides clues on molecular tagging of proteins for brown planthopper resistance. BMC plant biology 19:30 doi: 10.1186/s12870-018-1622-9
CrossRef Google Scholar
|
[36]
|
Liu W, Meng L, Zhao W, Wang Z, Miao C, et al. 2022. Proteomic and metabolomic evaluation of insect- and herbicide-resistant maize seeds. Metabolites 12:1078 doi: 10.3390/metabo12111078
CrossRef Google Scholar
|
[37]
|
de Mello US, Vidigal PMP, Vital CE, Tomaz AC, de Figueiredo M, et al. 2020. An overview of the transcriptional responses of two tolerant and susceptible sugarcane cultivars to borer (Diatraea saccharalis) infestation. Functional & Integrative Genomics 20:839−55 doi: 10.1007/s10142-020-00755-8
CrossRef Google Scholar
|
[38]
|
Coppola V, Coppola M, Rocco M, Digilio MC, D'Ambrosio C, et al. 2013. Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genomics 14:515 doi: 10.1186/1471-2164-14-515
CrossRef Google Scholar
|
[39]
|
Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, et al. 2010. Biotic stress globally downregulates photosynthesis genes. Plant, Cell & Environment 33:1597−613 doi: 10.1111/j.1365-3040.2010.02167.x
CrossRef Google Scholar
|
[40]
|
Kerchev PI, Fenton B, Foyer CH, Hancock RD. 2012. Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant, Cell & Environment 35:441−53 doi: 10.1111/j.1365-3040.2011.02399.x
CrossRef Google Scholar
|
[41]
|
Moustaka J, Moustakas M. 2023. Early-Stage detection of biotic and abiotic stress on plants by chlorophyll fluorescence imaging analysis. Biosensors 13:796 doi: 10.3390/bios13080796
CrossRef Google Scholar
|
[42]
|
Shen W, Fu Y, Wang L, Yao Y, Zhang Y, et al. 2023. Transcriptomic analysis revealed that low-density aphid infestation temporarily changes photosynthesis and disease resistance but persistently promotes insect resistance in poplar leaves. Forests 14:1866 doi: 10.3390/f14091866
CrossRef Google Scholar
|
[43]
|
Foyer CH, Rasool B, Davey JW, Hancock RD. 2016. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. Journal of Experimental Botany 67:2025−37 doi: 10.1093/jxb/erw079
CrossRef Google Scholar
|
[44]
|
Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, et al. 2023. Plant secondary metabolites: the weapons for biotic stress management. Metabolites 13:716 doi: 10.3390/metabo13060716
CrossRef Google Scholar
|
[45]
|
Xue C, Yao J, Xue YS, Su GQ, Wang L, et al. 2019. PbrMYB169 positively regulates lignification of stone cells in pear fruit. Journal of experimental botany 70:1801−14 doi: 10.1093/jxb/erz039
CrossRef Google Scholar
|
[46]
|
Kim JI, Zhang X, Pascuzzi PE, Liu CJ, Chapple C. 2020. Glucosinolate and phenylpropanoid biosynthesis are linked by proteasome-dependent degradation of PAL. New Phytologist 225:154−68 doi: 10.1111/nph.16108
CrossRef Google Scholar
|
[47]
|
He J, Liu Y, Yuan D, Duan M, Liu Y, et al. 2020. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proceedings of the National Academy of Sciences of the United States of America 117:271−77 doi: 10.1073/pnas.1902771116
CrossRef Google Scholar
|
[48]
|
Wang Y, Sheng L, Zhang H, Du X, An C, et al. 2017. CmMYB19 over-expression improves aphid tolerance in chrysanthemum by promoting lignin synthesis. International Journal of Molecular Sciences 18:619 doi: 10.3390/ijms18030619
CrossRef Google Scholar
|
[49]
|
An C, Sheng L, Du X, Wang Y, Zhang Y, et al. 2019. Overexpression of CmMYB15 provides chrysanthemum resistance to aphids by regulating the biosynthesis of lignin. Horticulture Research 6:84 doi: 10.1038/s41438-019-0166-y
CrossRef Google Scholar
|
[50]
|
Chen K, Song M, Guo Y, Liu L, Xue H, et al. 2019. MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. Plant Biotechnology Journal 17:2341−55 doi: 10.1111/pbi.13151
CrossRef Google Scholar
|
[51]
|
Senani N, Bedouhene S, Houali K. 2023. Peroxidase activity as a biochemical marker of insecticide use in vegetables. Acta Agriculturae Slovenica 119(2):1−9 doi: 10.14720/aas.2023.119.2.2657
CrossRef Google Scholar
|
[52]
|
Wang Y, Zhang M, Du P, Liu H, Zhang Z, et al. 2022. Transcriptome analysis of pod mutant reveals plant hormones are important regulators in controlling pod size in peanut (Arachis hypogaea L.). PeerJ 10:e12965 doi: 10.7717/peerj.12965
CrossRef Google Scholar
|
[53]
|
Zhao X, Niu Y, Bai X, Mao T. 2022. Transcriptomic and metabolic profiling reveals a lignin metabolism network involved in mesocotyl elongation during maize seed germination. Plants 11:1034 doi: 10.3390/plants11081034
CrossRef Google Scholar
|
[54]
|
López-Castillo LM, González-Leyzaola A, Diaz-Flores-Rivera MF, Winkler R, Wielsch N, et al. 2020. Modulation of aleurone peroxidases in kernels of insect-resistant maize (Zea mays L.; Pob84-C3R) after mechanical and insect damage. Frontiers in Plant Science 11:781 doi: 10.3389/fpls.2020.00781
CrossRef Google Scholar
|
[55]
|
López-Castillo LM, Díaz Flores-Rivera MF, Winkler R, García-Lara S. 2018. Increase of peroxidase activity in tropical maize after recurrent selection to storage pest resistance. Journal of Stored Products Research 75:47−55 doi: 10.1016/j.jspr.2017.11.007
CrossRef Google Scholar
|
[56]
|
Hu Q, Min L, Yang X, Jin S, Zhang L, et al. 2018. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis. Plant physiology 176:1808−23 doi: 10.1104/pp.17.01628
CrossRef Google Scholar
|
[57]
|
Iqbal MJ, Ahsan R, Afzal AJ, Jamai A, Meksem K, et al. 2009. Multigeneic QTL: the laccase encoded within the soybean Rfs2/rhg1 locus inferred to underlie part of the dual resistance to cyst nematode and sudden death syndrome. Current Issues in Molecular Biology 11:i11−i19
Google Scholar
|
[58]
|
Katoch R. 2022. Nutritional quality of major forage grasses of Himalayan region. In Nutritional Quality Management of Forages in the Himalayan Region. Singapore: Springer. pp. 279−308. https://doi.org/10.1007/978-981-16-5437-4_10
|
[59]
|
Zhang L, Gu H, Gong D, Chang J. 2011. Research progress of cinnamyl alcohol dehydrogenase and its gene. Acta Botanica Boreali-Occidentalia Sinica 31:204−11
Google Scholar
|
[60]
|
Jin S, Ren Q, Lian L, Cai X, Bian L, et al. 2020. Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage. Planta 252:10 doi: 10.1007/s00425-020-03407-0
CrossRef Google Scholar
|
[61]
|
Zhu J, Zhang H, Huang K, Guo R, Zhao J, et al. 2023. Comprehensive analysis of the laccase gene family in tea plant highlights its roles in development and stress responses. BMC Plant Biology 23:129 doi: 10.1186/s12870-023-04134-w
CrossRef Google Scholar
|
[62]
|
Islam MT, Kudla-Williams C, Kar S, Londo JP, Centinari M, et al. 2022. Deciphering genome-wide transcriptomic changes in grapevines heavily infested by spotted lanternflies. Frontiers in Insect Science 2:971221 doi: 10.3389/finsc.2022.971221
CrossRef Google Scholar
|
[63]
|
Wan J, Yi J, Tao Z, Ren Z, Otieno EO, et al. 2022. Species-specific plant-mediated effects between herbivores converge at high damage intensity. Ecology 103(5):e3647 doi: 10.1002/ecy.3647
CrossRef Google Scholar
|