[1]

Goosey L, Sharrock R. 2001. The Arabidopsis compact inflorescence genes: phase-specific growth regulation and the determination of inflorescence architecture. The Plant Journal 26:549−59

doi: 10.1046/j.1365-313x.2001.01053.x
[2]

Andrés F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics 13:627−39

doi: 10.1038/nrg3291
[3]

Freiman A, Shlizerman L, Golobovitch S, Yablovitz Z, Korchinsky R, et al. 2012. Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta 235:1239−51

doi: 10.1007/s00425-011-1571-0
[4]

Shen L, Chen Y, Su X, Zhang S, Pan H, et al. 2012. Two FT orthologs from Populus simonii Carrière induce early flowering in Arabidopsis and poplar trees. Plant Cell, Tissue and Organ Culture 108:371−79

doi: 10.1007/s11240-011-0048-y
[5]

Huijser P, Schmid M. 2011. The control of developmental phase transitions in plants. Development 138:4117−29

doi: 10.1242/dev.063511
[6]

Foerster JM, Beissinger T, de Leon N, Kaeppler S. 2015. Large effect QTL explain natural phenotypic variation for the developmental timing of vegetative phase change in maize (Zea mays L.). Theoretical and Applied Genetics 128:529−38

doi: 10.1007/s00122-014-2451-3
[7]

Rolland F, Baena-Gonzalez E, Sheen J. 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology 57:675−709

doi: 10.1146/annurev.arplant.57.032905.105441
[8]

Koroleva OA, Tomos AD, Farrar J, Pollock CJ. 2002. Changes in osmotic and turgor pressure in response to sugar accumulation in barley source leaves. Planta 215:210−19

doi: 10.1007/s00425-002-0744-2
[9]

Matsoukas IG, Massiah AJ, Thomas B. 2013. Starch metabolism and antiflorigenic signals modulate the juvenile-to-adult phase transition in Arabidopsis. Plant, Cell and Environment 36:1802−11

doi: 10.1111/pce.12088
[10]

Bäurle I, Dean C. 2006. The timing of developmental transitions in plants. Cell 125:655−64

doi: 10.1016/j.cell.2006.05.005
[11]

Song M, Wang R, Zhou F, Wang R, Zhang S, et al. 2020. SPLs-mediated flowering regulation and hormone biosynthesis and signaling accompany juvenile-adult phase transition in Pyrus. Scientia Horticulturae 272:109584

doi: 10.1016/j.scienta.2020.109584
[12]

Wu G, Park MY, Conway SR, Wang JW, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750−59

doi: 10.1016/j.cell.2009.06.031
[13]

Wu G, Poethig RS. 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539−47

doi: 10.1242/dev.02521
[14]

Lauter N, Kampani A, Carlson S, Goebel M, Moose SP. 2005. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proceedings of the National Academy of Sciences of the United States of America 102:9412−17

doi: 10.1073/pnas.0503927102
[15]

Glazińska P, Zienkiewicz A, Wojciechowski W, Kopcewicz J. 2009. The putative miR172 target gene InAPETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil. Journal of Plant Physiology 166:1801−13

doi: 10.1016/j.jplph.2009.05.011
[16]

Xu Y, Qian Z, Zhou B, Wu G. 2019. Age-dependent heteroblastic development of leaf hairs in Arabidopsis. New Phytologist 224:741−48

doi: 10.1111/nph.16054
[17]

Xu Y, Zhang L, Wu G. 2018. Epigenetic regulation of juvenile-to-adult transition in plants. Frontiers in Plant Science 9:1048

doi: 10.3389/fpls.2018.01048
[18]

Rassoulzadegan M, Grandjean V, Gounon P, Cuzin F. 2008. Epigenetic heredity in mice: involvement of RNA and miRNas. Journal de la Societe de Biologie 201:397−99

doi: 10.1051/jbio:2007911
[19]

Moraes TS, Immink RGH, Martinelli AP, Angenent GC, van Esse W, et al. 2022. Passiflora organensis FT/TFL1 gene family and their putative roles in phase transition and floral initiation. Plant Reproduction 35:105−26

doi: 10.1007/s00497-021-00431-2
[20]

Xing W, Wang Z, Wang X, Bao M, Ning G. 2014. Over-expression of an FT homolog from Prunus mume reduces juvenile phase and induces early flowering in rugosa rose. Scientia Horticulturae 172:68−72

doi: 10.1016/j.scienta.2014.03.050
[21]

Zhang Q, Zhang M, Zhao Y, Hu H, Huang Y, et al. 2022. Identification of trehalose-6-phosphate synthase (TPS)-coding genes involved in flowering induction of Lilium×formolongi. Plant Physiology and Biochemistry 171:84−94

doi: 10.1016/j.plaphy.2021.12.025
[22]

Lekshmi RS, Sora S, Anith KN, Soniya EV. 2022. Root colonization by the endophytic fungus Piriformospora indica shortens the juvenile phase of Piper nigrum L. by fine tuning the floral promotion pathways. Frontiers in Plant Science 13:954693

doi: 10.3389/fpls.2022.954693
[23]

Su M, Wang N, Jiang S, Fang H, Xu H, et al. 2018. Molecular characterization and expression analysis of the critical floral gene MdAGL24-like in red-fleshed apple. Plant Science 276:189−98

doi: 10.1016/j.plantsci.2018.08.021
[24]

Chai S, Wei X, Jiang Y, Wei J, Jiang S, et al. 2009. The flowering phenology and characteristics of reproductive modules of endangered plant Camellia nitidissma. Journal of Tropical and Subtropical Botany 17:5−11

[25]

Velázquez K, Agüero J, Vives MC, Aleza P, Pina JA, et al. 2016. Precocious flowering of juvenile citrus induced by a viral vector based on Citrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotechnology Journal 14:1976−85

doi: 10.1111/pbi.12555
[26]

Jordan GJ, Potts BM, Chalmers P, Wiltshire RJE. 2000. Quantitative genetic evidence that the timing of vegetative phase change in Eucalyptus globulus ssp. globulus is an adaptive trait. Australian Journal of Botany 48:561−67

doi: 10.1071/bt99038
[27]

Tang M, Bai X, Niu L, Chai X, Chen M, et al. 2018. miR172 regulates both vegetative and reproductive development in the perennial woody plant Jatropha curcas. Plant and Cell Physiology 59:2549−63

doi: 10.1093/pcp/pcy175
[28]

Sheng Y, Hao Z, Peng Y, Liu S, Hu L, et al. 2021. Morphological, phenological, and transcriptional analyses provide insight into the diverse flowering traits of a mutant of the relic woody plant Liriodendron chinense. Horticulture Research 8:174

doi: 10.1038/s41438-021-00610-2
[29]

Hsu CY, Liu Y, Luthe DS, Yuceer C. 2006. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. The Plant Cell 18:1846−61

doi: 10.1105/tpc.106.041038
[30]

Ma J, Chen X, Song Y, Zhang G, Zhou X, et al. 2021. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine. Plant Physiology 187:247−62

doi: 10.1093/plphys/kiab250
[31]

Yan J, Mao D, Liu X, Wang L, Xu F, et al. 2017. Isolation and functional characterization of a circadian-regulated CONSTANS homolog (GbCO) from Ginkgo biloba. Plant Cell Reports 36:1387−99

doi: 10.1007/s00299-017-2162-8
[32]

Meng X, Li Y, Yuan Y, Zhang Y, Li H, et al. 2020. The regulatory pathways of distinct flowering characteristics in Chinese jujube. Horticulture Research 7:123

doi: 10.1038/s41438-020-00344-7
[33]

Feng Z, Sun L, Dong M, Fan S, Shi K, et al. 2023. Novel players in organogenesis and flavonoid biosynthesis in cucumber glandular trichomes. Plant Physiology 192:2723−36

doi: 10.1093/plphys/kiad236
[34]

Vendemiatti E, Zsögön A, Silva GFFE, Almeida de Jesus F, Cutri L, et al. 2017. Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility. Plant Science 259:35−47

doi: 10.1016/j.plantsci.2017.03.006
[35]

Scott DB, Jin W, Ledford HK, Jung HS, Honma MA. 1999. EAF1 regulates vegetative-phase change and flowering time in Arabidopsis. Plant Physiology 120:675−84

doi: 10.1104/pp.120.3.675
[36]

Yoshikawa T, Ozawa S, Sentoku N, Itoh JI, Nagato Y, et al. 2013. Change of shoot architecture during juvenile-to-adult phase transition in soybean. Planta 238:229−37

doi: 10.1007/s00425-013-1895-z
[37]

Asai K, Satoh N, Sasaki H, Satoh H, Nagato Y. 2002. A rice heterochronic mutant, mori1, is defective in the juvenile-adult phase change. Development 129:265−73

doi: 10.1242/dev.129.1.265
[38]

Lawson EJR, Poethig RS. 1995. Shoot development in plants: time for a change. Trends in Genetics 11:263−68

doi: 10.1016/s0168-9525(00)89072-1
[39]

Abedon BG, Hatfield RD, Tracy WF. 2006. Cell wall composition in juvenile and adult leaves of maize (Zea mays L.). Journal of Agricultural and Food Chemistry 54:3896−900

doi: 10.1021/jf052872w
[40]

Chuck GS, Tobias C, Sun L, Kraemer F, Li C, et al. 2011. Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proceedings of the National Academy of Sciences of the United States of America 108:17550−55

doi: 10.1073/pnas.1113971108
[41]

Zhao Y, Chen D, Wang W. 2006. Dynamics of chlorophyll and soluble protein during phase change in Vitis vinifera × labrusca. Hebei Agricultural Sciences 01:23−25

doi: 10.16318/j.cnki.hbnykx.2006.01.006
[42]

Deikman J, Hammer PE. 1995. Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiology 108:47−57

doi: 10.1104/pp.108.1.47
[43]

Murray JR, Hackett WP. 1991. Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiology 97:343−51

doi: 10.1104/pp.97.1.343
[44]

Bon MC. 1988. J 16: an apex protein associated with juvenility of Sequoiadendron giganteum. Tree Physiology 4:381−87

doi: 10.1093/treephys/4.4.381
[45]

Amo-Marco JB, Vidal N, Vieitez AM, Ballester A. 1993. Polypeptide markers differentiating juvenile and adult tissues in chestnut. Journal of Plant Physiology 142:117−19

doi: 10.1016/S0176-1617(11)80119-7
[46]

Kuo J, Huang H, Cheng C, Chen L, Kuo T. 1995. Rejuvenation in vitro: modulation of protein phosphorylation in Sequoia sempervirens. Journal of Plant Physiology 146:333−36

doi: 10.1016/S0176-1617(11)82064-X
[47]

Cao X, Gao Y, Wang Y, Li C, Zhao Y, et al. 2011. Differential expression and modification of proteins during ontogenesis in Malus domestica. Proteomics 11:4688−701

doi: 10.1002/pmic.201100132
[48]

Marasek-Ciolakowska A, Sochacki D, Marciniak P. 2021. Breeding aspects of selected ornamental bulbous crops. Agronomy 11:1709

doi: 10.3390/agronomy11091709
[49]

Tan J, Yi X, Luo L, Yu C, Wang J, et al. 2021. RNA-seq and sRNA-seq analysis in lateral buds and leaves of juvenile and adult roses. Scientia Horticulturae 290:110513

doi: 10.1016/j.scienta.2021.110513
[50]

Zhang J, Li Z, Yao J, Hu C. 2009. Identification of flowering-related genes between early flowering trifoliate orange mutant and wild-type trifoliate orange (Poncirus trifoliata L. Raf.) by suppression subtraction hybridization (SSH) and macroarray. Gene 430:95−104

doi: 10.1016/j.gene.2008.09.023
[51]

Li X, Wei W. 1992. Genetic analysis on juvenile period of parents to their progenies in pear. Fruit Science 03:165−68

doi: 10.13925/j.cnki.gsxb.1992.03.010
[52]

Fortescue JA, Turner DW, Romero R. 2011. Evidence that banana (Musa spp.), a tropical monocotyledon, has a facultative long-day response to photoperiod. Functional Plant Biology 38:867−78

doi: 10.1071/FP11128
[53]

Turner DW, Fortescue JA, Ocimati W, Blomme G. 2016. Plantain cultivars (Musa spp. AAB) grown at different altitudes demonstrate cool temperature and photoperiod responses relevant to genetic improvement. Field Crops Research 194:103−11

doi: 10.1016/j.fcr.2016.02.006
[54]

Zhao M, Liu R, Chen Y, Cui J, Ge W, et al. 2022. Molecular identification and functional verification of SPL9 and SPL15 of Lilium. Molecular Genetics and Genomics 297:63−74

doi: 10.1007/s00438-021-01832-8
[55]

Li X, Jia L, Xu J, Deng X, Wang Y, et al. 2013. FT-like NFT1 gene may play a role in flower transition induced by heat accumulation in Narcissus tazetta var. chinensis. Plant and Cell Physiology 54:270−81

doi: 10.1093/pcp/pcs181
[56]

Dhami N, Cazzonelli CI. 2020. Prolonged cold exposure to Arabidopsis juvenile seedlings extends vegetative growth and increases the number of shoot branches. Plant Signaling & Behavior 15:1789320

doi: 10.1080/15592324.2020.1789320
[57]

Lindemann-Zutz K, Fricke A, Stützel H. 2016. Prediction of time to harvest and its variability in broccoli (Brassica oleracea var. italica) Part I. plant developmental variation and forecast of time to head induction. Scientia Horticulturae 198:424−33

doi: 10.1016/j.scienta.2015.12.023
[58]

Monostori I, Heilmann M, Kocsy G, Rakszegi M, Ahres M, et al. 2018. LED lighting – modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity. Frontiers in Plant Science 9:605

doi: 10.3389/fpls.2018.00605
[59]

Stephenson E, Estrada S, Meng X, Ourada J, Muszynski MG, et al. 2019. Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize. PLoS ONE 14:e0203728

doi: 10.1371/journal.pone.0203728
[60]

Whitman CM, Runkle ES. 2012. Determining the flowering requirements of two Aquilegia cultivars. HortScience 47:1261−64

doi: 10.21273/HORTSCI.47.9.1261
[61]

Chen M, Zhang Y, Niu L, Xiao F, Liu X. 2012. Study on characteristics of growth and development in seedling progeny of Lilium regale. Journal of Northwest A&F University (Natural Science Edition) 40:195−201

doi: 10.13207/j.cnki.jnwafu.2012.09.029
[62]

Lu S, Li Y, Wang J. Srinives P, Nan H, et al. 2015. QTL mapping for flowering time in different latitude in soybean. Euphytica 206:725−36

doi: 10.1007/s10681-015-1501-5
[63]

Sønsteby A; Heide OM. 2009. Effects of photoperiod and temperature on growth and flowering in the annual (primocane) fruiting raspberry (Rubus idaeus L.) cultivar 'Polka'. The Journal of Horticultural Science and Biotechnology 84:439−46

doi: 10.1080/14620316.2009.11512546
[64]

Yañez P, Chinone S, Hirohata R, Ohno H, Ohkawa K. 2012. Effects of time and duration of short-day treatments under long-day conditions on flowering of a quantitative short-day sunflower (Helianthus annuus L.) 'Sunrich Orange'. Scientia Horticulturae 140:8−11

doi: 10.1016/j.scienta.2012.03.008
[65]

Ohishi-Yamazaki M, Watanabe M, Nakanishi A, Che JG, Horiuchi N, et al. 2018. Shortening of the juvenile phase of the southern highbush blueberry (Vaccinium corymbosum L. interspecific hybrid) grown in controlled rooms under artificial light. The Horticulture Journal 87:329−39

doi: 10.2503/hortj.OKD-136
[66]

Campa C, Urban L, Mondolot L, Fabre D, Roques S, et al. 2017. Juvenile coffee leaves acclimated to low light are unable to cope with a moderate light increase. Frontiers in Plant Science 8:1126

doi: 10.3389/fpls.2017.01126
[67]

Xu M, Hu T, Poethig RS. 2021. Low light intensity delays vegetative phase change. Plant Physiology 187:1177−88

doi: 10.1093/plphys/kiab243
[68]

Xie Y, Zhou Q, Zhao Y, Li Q, Liu Y, et al. 2020. FHY3 and FAR1 integrate light signals with the miR156-SPL module-mediated aging pathway to regulate Arabidopsis flowering. Molecular Plant 13:483−98

doi: 10.1016/j.molp.2020.01.013
[69]

Proveniers M. 2013. Sugars speed up the circle of life. eLife 2:e00625

doi: 10.7554/eLife.00625
[70]

Xu M, Hu T, Zhao J, Park MY, Earley KW, et al. 2016. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genetics 12:e1006263

doi: 10.1371/journal.pgen.1006263
[71]

Meng L, Bao Q, Mu X, Tong C, Cao X, et al. 2021. Glucose- and sucrose-signaling modules regulate the Arabidopsis juvenile-to-adult phase transition. Cell Reports 36:109348

doi: 10.1016/j.celrep.2021.109348
[72]

Yang L, Xu M, Koo Y, He J, Poethig RS. 2013. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife 2:e00260

doi: 10.7554/eLife.00260
[73]

Ponnu J, Schlereth A, Zacharaki V, Działo MA, Abel C, et al. 2020. The trehalose 6-phosphate pathway impacts vegetative phase change in Arabidopsis thaliana. The Plant Journal 104:768−80

doi: 10.1111/tpj.14965
[74]

Bajguz A, Tretyn A. 2003. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027−46

doi: 10.1016/s0031-9422(02)00656-8
[75]

Oklestkova J, Rárová L, Kvasnica M, Strnad M. 2015. Brassinosteroids: synthesis and biological activities. Phytochemistry Reviews 14:1053−72

doi: 10.1007/s11101-015-9446-9
[76]

Castle J, Szekeres M, Jenkins G, Bishop GJ. 2005. Unique and overlapping expression patterns of Arabidopsis CYP85 genes involved in brassinosteroid C-6 oxidation. Plant Molecular Biology 57:129−40

doi: 10.1007/s11103-004-6851-7
[77]

Luo L, Zhu Y, Gui J, Yin T, Luo W, et al. 2021. A comparative analysis of transcription networks active in juvenile and mature wood in Populus. Frontiers in Plant Science 12:675075

doi: 10.3389/fpls.2021.675075
[78]

Cheon J, Park SY, Schulz B, Choe S. 2010. Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction. BMC Plant Biology 10:270

doi: 10.1186/1471-2229-10-270
[79]

Wang L, Yu P, Lyu J, Hu Y, Han C, et al. 2021. BZR1 physically interacts with SPL9 to regulate the vegetative phase change and cell elongation in Arabidopsis. International Journal of Molecular Sciences 22:10415

doi: 10.3390/ijms221910415
[80]

Mutasa-Göttgens E, Hedden P. 2009. Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany 60:1979−89

doi: 10.1093/jxb/erp040
[81]

Chien JC, Sussex IM. 1996. Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana (L.) Heynh. Plant Physiology 111:1321−28

doi: 10.1104/pp.111.4.1321
[82]

Telfer A, Bollman KM, Poethig RS. 1997. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 124:645−54

doi: 10.1242/dev.124.3.645
[83]

Silverstone AL, Mak PYA, Martinez EC, Sun T. 1997. The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146:1087−99

doi: 10.1093/genetics/146.3.1087
[84]

Dill A, Sun T. 2001. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777−85

doi: 10.1093/genetics/159.2.777
[85]

Wadhi M, Ram HYM. 1967. Shortening the juvenile phase for flowering in Kalanchoe pinnata Pers. Planta 73:28−36

doi: 10.1007/BF00419838
[86]

Evans MMS, Poethig RS. 1995. Gibberellins promote vegetative phase change and reproductive maturity in maize. Plant Physiology 108:475−87

doi: 10.1104/pp.108.2.475
[87]

Wei X, Wu S, Liang X, Wang K, Li Y, et al. 2021. Paclobutrazol modulates endogenous level of phytohormones in inducing early flowering in Camellia tamdaoensis Hakoda et Ninh, a golden camellia species. HortScience 56:1258−62

doi: 10.21273/HORTSCI16042-21
[88]

Osadchuk K, Cheng CL, Irish EE. 2019. Jasmonic acid levels decline in advance of the transition to the adult phase in maize. Plant Direct 3:e00180

doi: 10.1002/pld3.180
[89]

Beydler B, Osadchuk K, Cheng CL, Manak JR, Irish EE. 2016. The juvenile phase of maize sees upregulation of stress-response genes and is extended by exogenous jasmonic acid. Plant Physiology 171:2648−58

doi: 10.1104/pp.15.01707
[90]

Hause B, Demus U, Teichmann C, Parthier B, Wasternack C. 1996. Developmental and tissue-specific expression of JIP-23, a jasmonate-inducible protein of barley. Plant Cell and Physiology 37:641−49

doi: 10.1093/oxfordjournals.pcp.a028993
[91]

Hibara KI, Isono M, Mimura M, Sentoku N, Kojima M, et al. 2016. Jasmonate regulates juvenile-to-adult phase transition in rice. Development 143:3407−16

doi: 10.1242/dev.138602
[92]

Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, et al. 2003. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. The Plant Cell 15:2532−50

doi: 10.1105/tpc.014928
[93]

Werner S, Bartrina I, Schmülling T. 2021. Cytokinin regulates vegetative phase change in Arabidopsis thaliana through the miR172/TOE1-TOE2 module. Nature Communications 12:5816

doi: 10.1038/s41467-021-26088-z
[94]

Werner S, Bartrina I, Novák O, Strnad M, Werner T, et al. 2021. The cytokinin status of the epidermis regulates aspects of vegetative and reproductive development in Arabidopsis thaliana. Frontiers in Plant Science 12:613488

doi: 10.3389/fpls.2021.613488
[95]

Saleh O, Issman N, Seumel GI, Stav R, Samach A, et al. 2011. MicroRNA534a control of BLADE-ON-PETIOLE 1 and 2 mediates juvenile-to-adult gametophyte transition in Physcomitrella patens. The Plant Journal 5:661−74

doi: 10.1111/j.1365-313X.2010.04451.x
[96]

Finkelstein RR, Rock CD. 2002. Abscisic acid biosynthesis and response. The Arabidopsis Book 2002:e0058

doi: 10.1199/tab.0058
[97]

Wang Z, Wang Y, Yu Q, Li Q, Li Y. 2019. Effects of shortening juvenescent phase techniques on hormones in roots and leaves of starkrimson seedlings. Deciduous Fruit Trees 51:14−15

doi: 10.13855/j.cnki.lygs.2019.04.005
[98]

Guo C, Xu Y, Shi M, Lai Y, Wu X, et al. 2017. Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in Arabidopsis. The Plant Cell 29:1293−304

doi: 10.1105/tpc.16.00975
[99]

Matsoukas IG. 2014. Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Frontiers in Genetics 5:218

doi: 10.3389/fgene.2014.00218
[100]

Aukerman MJ, Sakai H. 2003. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. The Plant Cell 15:2730−41

doi: 10.1105/tpc.016238
[101]

Cardon GH, Höhmann S, Nettesheim K, Saedler H, Huijser P. 1997. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. The Plant Journal 12:367−77

doi: 10.1046/j.1365-313x.1997.12020367.x
[102]

Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, et al. 2011. miRNA control of vegetative phase change in trees. PLoS Genetics 7:e1002012

doi: 10.1371/journal.pgen.1002012
[103]

Ye B, Zhang K, Wang J. 2020. The role of miR156 in rejuvenation in Arabidopsis thaliana. Journal of Integrative Plant Biology 62:550−55

doi: 10.1111/jipb.12855
[104]

Xing L, Zhang D, Li Y, Zhao C, Zhang S, et al. 2014. Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genomics 15:1125

doi: 10.1186/1471-2164-15-1125
[105]

Li S, Yang X, Wu F, He Y. 2012. HYL1 controls the miR156-mediated juvenile phase of vegetative growth. Journal of Experimental Botany 63:2787−98

doi: 10.1093/jxb/err465
[106]

He J, Xu M, Willmann MR, McCormick K, Hu T, et al. 2018. Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. PLoS Genetics 14:e1007337

doi: 10.1371/journal.pgen.1007337
[107]

Gao J, Zhang K, Cheng Y, Yu S, Shang G, et al. 2022. A robust mechanism for resetting juvenility during each generation in Arabidopsis. Nature Plants 8:257−68

doi: 10.1038/s41477-022-01110-4
[108]

Hanano S, Goto K. 2011. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. The Plant Cell 23:3172−84

doi: 10.1105/tpc.111.088641
[109]

Hanzawa Y, Money T, Bradley D. 2005. A single amino acid converts a repressor to an activator of flowering. Proceedings of the National Academy of Sciences of the United States of America 102:7748−53

doi: 10.1073/pnas.0500932102
[110]

Zheng J, Ma Y, Zhang M, Lyu M, Yuan Y, et al. 2019. Expression pattern of FT/TFL1 and miR156-targeted SPL genes associated with developmental stages in Dendrobium catenatum. International Journal of Molecular Sciences 20:2725

doi: 10.3390/ijms20112725
[111]

Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, et al. 2010. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant and Cell Physiology 51:561−75

doi: 10.1093/pcp/pcq021
[112]

Nakatsuka T, Abe Y, Kakizaki Y, Kubota A, Shimada N, et al. 2009. Over-expression of Arabidopsis FT gene reduces juvenile phase and induces early flowering in ornamental gentian plants. Euphytica 168:113−19

doi: 10.1007/s10681-009-9899-2
[113]

Li Y, Zhang B, Wang Y, Gong X, Yu H. 2021. DOTFL1 affects the floral transition in orchid Dendrobium Chao Praya Smile. Plant Physiology 186:2021−36

doi: 10.1093/plphys/kiab200
[114]

Xu Y, Guo C, Zhou B, Li C, Wang H, et al. 2016. Regulation of vegetative phase change by SWI2/SNF2 chromatin remodeling ATPase BRAHMA. Plant Physiology 172:2416−28

doi: 10.1104/pp.16.01588
[115]

Feng S, Jacobsen SE, Reik W. 2010. Epigenetic reprogramming in plant and animal development. Science 330:622−27

doi: 10.1126/science.1190614
[116]

Bitonti MB, Cozza R, Chiappetta A, Giannino D, Ruffini Castiglione M, et al. 2002. Distinct nuclear organization, DNA methylation pattern and cytokinin distribution mark juvenile, juvenile-like and adult vegetative apical meristems in peach (Prunus persica (L.) Batsch). Journal of Experimental Botany 53:1047−54

doi: 10.1093/jexbot/53.371.1047
[117]

Chua YL, Channelière S, Mott E, Gray JC. 2005. The bromodomain protein GTE6 controls leaf development in Arabidopsis by histone acetylation at ASYMMETRIC LEAVES1. Genes Development 19:2245−54

doi: 10.1101/gad.352005
[118]

Kim JY, Oh JE, Noh YS, Noh B. 2015. Epigenetic control of juvenile-to-adult phase transition by the Arabidopsis SAGA-like complex. The Plant Journal 83:537−45

doi: 10.1111/tpj.12908
[119]

Hu T, Manuela D, Hinsch V, Xu M. 2022. PICKLE associates with histone deacetylase 9 to mediate vegetative phase change in Arabidopsis. New Phytologist 235:1070−81

doi: 10.1111/nph.18174
[120]

Calonje M. 2014. PRC1 marks the difference in plant PcG repression. Molecular Plant 7:459−71

doi: 10.1093/mp/sst150
[121]

Picó S, Ortiz-Marchena MI, Merini W, Calonje M. 2015. Deciphering the role of POLYCOMB REPRESSIVE COMPLEX1 variants in regulating the acquisition of flowering competence in Arabidopsis. Plant Physiology 168:1286−97

doi: 10.1104/pp.15.00073
[122]

Yan R, Wang Z, Ren Y, Li H, Liu N, et al. 2019. Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven. International Journal of Molecular Sciences 20:2920

doi: 10.3390/ijms20122920