[1]
|
Goosey L, Sharrock R. 2001. The Arabidopsis compact inflorescence genes: phase-specific growth regulation and the determination of inflorescence architecture. The Plant Journal 26:549−59 doi: 10.1046/j.1365-313x.2001.01053.x
CrossRef Google Scholar
|
[2]
|
Andrés F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics 13:627−39 doi: 10.1038/nrg3291
CrossRef Google Scholar
|
[3]
|
Freiman A, Shlizerman L, Golobovitch S, Yablovitz Z, Korchinsky R, et al. 2012. Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta 235:1239−51 doi: 10.1007/s00425-011-1571-0
CrossRef Google Scholar
|
[4]
|
Shen L, Chen Y, Su X, Zhang S, Pan H, et al. 2012. Two FT orthologs from Populus simonii Carrière induce early flowering in Arabidopsis and poplar trees. Plant Cell, Tissue and Organ Culture 108:371−79 doi: 10.1007/s11240-011-0048-y
CrossRef Google Scholar
|
[5]
|
Huijser P, Schmid M. 2011. The control of developmental phase transitions in plants. Development 138:4117−29 doi: 10.1242/dev.063511
CrossRef Google Scholar
|
[6]
|
Foerster JM, Beissinger T, de Leon N, Kaeppler S. 2015. Large effect QTL explain natural phenotypic variation for the developmental timing of vegetative phase change in maize (Zea mays L.). Theoretical and Applied Genetics 128:529−38 doi: 10.1007/s00122-014-2451-3
CrossRef Google Scholar
|
[7]
|
Rolland F, Baena-Gonzalez E, Sheen J. 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology 57:675−709 doi: 10.1146/annurev.arplant.57.032905.105441
CrossRef Google Scholar
|
[8]
|
Koroleva OA, Tomos AD, Farrar J, Pollock CJ. 2002. Changes in osmotic and turgor pressure in response to sugar accumulation in barley source leaves. Planta 215:210−19 doi: 10.1007/s00425-002-0744-2
CrossRef Google Scholar
|
[9]
|
Matsoukas IG, Massiah AJ, Thomas B. 2013. Starch metabolism and antiflorigenic signals modulate the juvenile-to-adult phase transition in Arabidopsis. Plant, Cell and Environment 36:1802−11 doi: 10.1111/pce.12088
CrossRef Google Scholar
|
[10]
|
Bäurle I, Dean C. 2006. The timing of developmental transitions in plants. Cell 125:655−64 doi: 10.1016/j.cell.2006.05.005
CrossRef Google Scholar
|
[11]
|
Song M, Wang R, Zhou F, Wang R, Zhang S, et al. 2020. SPLs-mediated flowering regulation and hormone biosynthesis and signaling accompany juvenile-adult phase transition in Pyrus. Scientia Horticulturae 272:109584 doi: 10.1016/j.scienta.2020.109584
CrossRef Google Scholar
|
[12]
|
Wu G, Park MY, Conway SR, Wang JW, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750−59 doi: 10.1016/j.cell.2009.06.031
CrossRef Google Scholar
|
[13]
|
Wu G, Poethig RS. 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539−47 doi: 10.1242/dev.02521
CrossRef Google Scholar
|
[14]
|
Lauter N, Kampani A, Carlson S, Goebel M, Moose SP. 2005. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proceedings of the National Academy of Sciences of the United States of America 102:9412−17 doi: 10.1073/pnas.0503927102
CrossRef Google Scholar
|
[15]
|
Glazińska P, Zienkiewicz A, Wojciechowski W, Kopcewicz J. 2009. The putative miR172 target gene InAPETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil. Journal of Plant Physiology 166:1801−13 doi: 10.1016/j.jplph.2009.05.011
CrossRef Google Scholar
|
[16]
|
Xu Y, Qian Z, Zhou B, Wu G. 2019. Age-dependent heteroblastic development of leaf hairs in Arabidopsis. New Phytologist 224:741−48 doi: 10.1111/nph.16054
CrossRef Google Scholar
|
[17]
|
Xu Y, Zhang L, Wu G. 2018. Epigenetic regulation of juvenile-to-adult transition in plants. Frontiers in Plant Science 9:1048 doi: 10.3389/fpls.2018.01048
CrossRef Google Scholar
|
[18]
|
Rassoulzadegan M, Grandjean V, Gounon P, Cuzin F. 2008. Epigenetic heredity in mice: involvement of RNA and miRNas. Journal de la Societe de Biologie 201:397−99 doi: 10.1051/jbio:2007911
CrossRef Google Scholar
|
[19]
|
Moraes TS, Immink RGH, Martinelli AP, Angenent GC, van Esse W, et al. 2022. Passiflora organensis FT/TFL1 gene family and their putative roles in phase transition and floral initiation. Plant Reproduction 35:105−26 doi: 10.1007/s00497-021-00431-2
CrossRef Google Scholar
|
[20]
|
Xing W, Wang Z, Wang X, Bao M, Ning G. 2014. Over-expression of an FT homolog from Prunus mume reduces juvenile phase and induces early flowering in rugosa rose. Scientia Horticulturae 172:68−72 doi: 10.1016/j.scienta.2014.03.050
CrossRef Google Scholar
|
[21]
|
Zhang Q, Zhang M, Zhao Y, Hu H, Huang Y, et al. 2022. Identification of trehalose-6-phosphate synthase (TPS)-coding genes involved in flowering induction of Lilium×formolongi. Plant Physiology and Biochemistry 171:84−94 doi: 10.1016/j.plaphy.2021.12.025
CrossRef Google Scholar
|
[22]
|
Lekshmi RS, Sora S, Anith KN, Soniya EV. 2022. Root colonization by the endophytic fungus Piriformospora indica shortens the juvenile phase of Piper nigrum L. by fine tuning the floral promotion pathways. Frontiers in Plant Science 13:954693 doi: 10.3389/fpls.2022.954693
CrossRef Google Scholar
|
[23]
|
Su M, Wang N, Jiang S, Fang H, Xu H, et al. 2018. Molecular characterization and expression analysis of the critical floral gene MdAGL24-like in red-fleshed apple. Plant Science 276:189−98 doi: 10.1016/j.plantsci.2018.08.021
CrossRef Google Scholar
|
[24]
|
Chai S, Wei X, Jiang Y, Wei J, Jiang S, et al. 2009. The flowering phenology and characteristics of reproductive modules of endangered plant Camellia nitidissma. Journal of Tropical and Subtropical Botany 17:5−11
Google Scholar
|
[25]
|
Velázquez K, Agüero J, Vives MC, Aleza P, Pina JA, et al. 2016. Precocious flowering of juvenile citrus induced by a viral vector based on Citrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotechnology Journal 14:1976−85 doi: 10.1111/pbi.12555
CrossRef Google Scholar
|
[26]
|
Jordan GJ, Potts BM, Chalmers P, Wiltshire RJE. 2000. Quantitative genetic evidence that the timing of vegetative phase change in Eucalyptus globulus ssp. globulus is an adaptive trait. Australian Journal of Botany 48:561−67 doi: 10.1071/bt99038
CrossRef Google Scholar
|
[27]
|
Tang M, Bai X, Niu L, Chai X, Chen M, et al. 2018. miR172 regulates both vegetative and reproductive development in the perennial woody plant Jatropha curcas. Plant and Cell Physiology 59:2549−63 doi: 10.1093/pcp/pcy175
CrossRef Google Scholar
|
[28]
|
Sheng Y, Hao Z, Peng Y, Liu S, Hu L, et al. 2021. Morphological, phenological, and transcriptional analyses provide insight into the diverse flowering traits of a mutant of the relic woody plant Liriodendron chinense. Horticulture Research 8:174 doi: 10.1038/s41438-021-00610-2
CrossRef Google Scholar
|
[29]
|
Hsu CY, Liu Y, Luthe DS, Yuceer C. 2006. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. The Plant Cell 18:1846−61 doi: 10.1105/tpc.106.041038
CrossRef Google Scholar
|
[30]
|
Ma J, Chen X, Song Y, Zhang G, Zhou X, et al. 2021. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine. Plant Physiology 187:247−62 doi: 10.1093/plphys/kiab250
CrossRef Google Scholar
|
[31]
|
Yan J, Mao D, Liu X, Wang L, Xu F, et al. 2017. Isolation and functional characterization of a circadian-regulated CONSTANS homolog (GbCO) from Ginkgo biloba. Plant Cell Reports 36:1387−99 doi: 10.1007/s00299-017-2162-8
CrossRef Google Scholar
|
[32]
|
Meng X, Li Y, Yuan Y, Zhang Y, Li H, et al. 2020. The regulatory pathways of distinct flowering characteristics in Chinese jujube. Horticulture Research 7:123 doi: 10.1038/s41438-020-00344-7
CrossRef Google Scholar
|
[33]
|
Feng Z, Sun L, Dong M, Fan S, Shi K, et al. 2023. Novel players in organogenesis and flavonoid biosynthesis in cucumber glandular trichomes. Plant Physiology 192:2723−36 doi: 10.1093/plphys/kiad236
CrossRef Google Scholar
|
[34]
|
Vendemiatti E, Zsögön A, Silva GFFE, Almeida de Jesus F, Cutri L, et al. 2017. Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility. Plant Science 259:35−47 doi: 10.1016/j.plantsci.2017.03.006
CrossRef Google Scholar
|
[35]
|
Scott DB, Jin W, Ledford HK, Jung HS, Honma MA. 1999. EAF1 regulates vegetative-phase change and flowering time in Arabidopsis. Plant Physiology 120:675−84 doi: 10.1104/pp.120.3.675
CrossRef Google Scholar
|
[36]
|
Yoshikawa T, Ozawa S, Sentoku N, Itoh JI, Nagato Y, et al. 2013. Change of shoot architecture during juvenile-to-adult phase transition in soybean. Planta 238:229−37 doi: 10.1007/s00425-013-1895-z
CrossRef Google Scholar
|
[37]
|
Asai K, Satoh N, Sasaki H, Satoh H, Nagato Y. 2002. A rice heterochronic mutant, mori1, is defective in the juvenile-adult phase change. Development 129:265−73 doi: 10.1242/dev.129.1.265
CrossRef Google Scholar
|
[38]
|
Lawson EJR, Poethig RS. 1995. Shoot development in plants: time for a change. Trends in Genetics 11:263−68 doi: 10.1016/s0168-9525(00)89072-1
CrossRef Google Scholar
|
[39]
|
Abedon BG, Hatfield RD, Tracy WF. 2006. Cell wall composition in juvenile and adult leaves of maize (Zea mays L.). Journal of Agricultural and Food Chemistry 54:3896−900 doi: 10.1021/jf052872w
CrossRef Google Scholar
|
[40]
|
Chuck GS, Tobias C, Sun L, Kraemer F, Li C, et al. 2011. Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proceedings of the National Academy of Sciences of the United States of America 108:17550−55 doi: 10.1073/pnas.1113971108
CrossRef Google Scholar
|
[41]
|
Zhao Y, Chen D, Wang W. 2006. Dynamics of chlorophyll and soluble protein during phase change in Vitis vinifera × labrusca. Hebei Agricultural Sciences 01:23−25 doi: 10.16318/j.cnki.hbnykx.2006.01.006
CrossRef Google Scholar
|
[42]
|
Deikman J, Hammer PE. 1995. Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiology 108:47−57 doi: 10.1104/pp.108.1.47
CrossRef Google Scholar
|
[43]
|
Murray JR, Hackett WP. 1991. Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiology 97:343−51 doi: 10.1104/pp.97.1.343
CrossRef Google Scholar
|
[44]
|
Bon MC. 1988. J 16: an apex protein associated with juvenility of Sequoiadendron giganteum. Tree Physiology 4:381−87 doi: 10.1093/treephys/4.4.381
CrossRef Google Scholar
|
[45]
|
Amo-Marco JB, Vidal N, Vieitez AM, Ballester A. 1993. Polypeptide markers differentiating juvenile and adult tissues in chestnut. Journal of Plant Physiology 142:117−19 doi: 10.1016/S0176-1617(11)80119-7
CrossRef Google Scholar
|
[46]
|
Kuo J, Huang H, Cheng C, Chen L, Kuo T. 1995. Rejuvenation in vitro: modulation of protein phosphorylation in Sequoia sempervirens. Journal of Plant Physiology 146:333−36 doi: 10.1016/S0176-1617(11)82064-X
CrossRef Google Scholar
|
[47]
|
Cao X, Gao Y, Wang Y, Li C, Zhao Y, et al. 2011. Differential expression and modification of proteins during ontogenesis in Malus domestica. Proteomics 11:4688−701 doi: 10.1002/pmic.201100132
CrossRef Google Scholar
|
[48]
|
Marasek-Ciolakowska A, Sochacki D, Marciniak P. 2021. Breeding aspects of selected ornamental bulbous crops. Agronomy 11:1709 doi: 10.3390/agronomy11091709
CrossRef Google Scholar
|
[49]
|
Tan J, Yi X, Luo L, Yu C, Wang J, et al. 2021. RNA-seq and sRNA-seq analysis in lateral buds and leaves of juvenile and adult roses. Scientia Horticulturae 290:110513 doi: 10.1016/j.scienta.2021.110513
CrossRef Google Scholar
|
[50]
|
Zhang J, Li Z, Yao J, Hu C. 2009. Identification of flowering-related genes between early flowering trifoliate orange mutant and wild-type trifoliate orange (Poncirus trifoliata L. Raf.) by suppression subtraction hybridization (SSH) and macroarray. Gene 430:95−104 doi: 10.1016/j.gene.2008.09.023
CrossRef Google Scholar
|
[51]
|
Li X, Wei W. 1992. Genetic analysis on juvenile period of parents to their progenies in pear. Fruit Science 03:165−68 doi: 10.13925/j.cnki.gsxb.1992.03.010
CrossRef Google Scholar
|
[52]
|
Fortescue JA, Turner DW, Romero R. 2011. Evidence that banana (Musa spp.), a tropical monocotyledon, has a facultative long-day response to photoperiod. Functional Plant Biology 38:867−78 doi: 10.1071/FP11128
CrossRef Google Scholar
|
[53]
|
Turner DW, Fortescue JA, Ocimati W, Blomme G. 2016. Plantain cultivars (Musa spp. AAB) grown at different altitudes demonstrate cool temperature and photoperiod responses relevant to genetic improvement. Field Crops Research 194:103−11 doi: 10.1016/j.fcr.2016.02.006
CrossRef Google Scholar
|
[54]
|
Zhao M, Liu R, Chen Y, Cui J, Ge W, et al. 2022. Molecular identification and functional verification of SPL9 and SPL15 of Lilium. Molecular Genetics and Genomics 297:63−74 doi: 10.1007/s00438-021-01832-8
CrossRef Google Scholar
|
[55]
|
Li X, Jia L, Xu J, Deng X, Wang Y, et al. 2013. FT-like NFT1 gene may play a role in flower transition induced by heat accumulation in Narcissus tazetta var. chinensis. Plant and Cell Physiology 54:270−81 doi: 10.1093/pcp/pcs181
CrossRef Google Scholar
|
[56]
|
Dhami N, Cazzonelli CI. 2020. Prolonged cold exposure to Arabidopsis juvenile seedlings extends vegetative growth and increases the number of shoot branches. Plant Signaling & Behavior 15:1789320 doi: 10.1080/15592324.2020.1789320
CrossRef Google Scholar
|
[57]
|
Lindemann-Zutz K, Fricke A, Stützel H. 2016. Prediction of time to harvest and its variability in broccoli (Brassica oleracea var. italica) Part I. plant developmental variation and forecast of time to head induction. Scientia Horticulturae 198:424−33 doi: 10.1016/j.scienta.2015.12.023
CrossRef Google Scholar
|
[58]
|
Monostori I, Heilmann M, Kocsy G, Rakszegi M, Ahres M, et al. 2018. LED lighting – modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity. Frontiers in Plant Science 9:605 doi: 10.3389/fpls.2018.00605
CrossRef Google Scholar
|
[59]
|
Stephenson E, Estrada S, Meng X, Ourada J, Muszynski MG, et al. 2019. Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize. PLoS ONE 14:e0203728 doi: 10.1371/journal.pone.0203728
CrossRef Google Scholar
|
[60]
|
Whitman CM, Runkle ES. 2012. Determining the flowering requirements of two Aquilegia cultivars. HortScience 47:1261−64 doi: 10.21273/HORTSCI.47.9.1261
CrossRef Google Scholar
|
[61]
|
Chen M, Zhang Y, Niu L, Xiao F, Liu X. 2012. Study on characteristics of growth and development in seedling progeny of Lilium regale. Journal of Northwest A&F University (Natural Science Edition) 40:195−201 doi: 10.13207/j.cnki.jnwafu.2012.09.029
CrossRef Google Scholar
|
[62]
|
Lu S, Li Y, Wang J. Srinives P, Nan H, et al. 2015. QTL mapping for flowering time in different latitude in soybean. Euphytica 206:725−36 doi: 10.1007/s10681-015-1501-5
CrossRef Google Scholar
|
[63]
|
Sønsteby A; Heide OM. 2009. Effects of photoperiod and temperature on growth and flowering in the annual (primocane) fruiting raspberry (Rubus idaeus L.) cultivar 'Polka'. The Journal of Horticultural Science and Biotechnology 84:439−46 doi: 10.1080/14620316.2009.11512546
CrossRef Google Scholar
|
[64]
|
Yañez P, Chinone S, Hirohata R, Ohno H, Ohkawa K. 2012. Effects of time and duration of short-day treatments under long-day conditions on flowering of a quantitative short-day sunflower (Helianthus annuus L.) 'Sunrich Orange'. Scientia Horticulturae 140:8−11 doi: 10.1016/j.scienta.2012.03.008
CrossRef Google Scholar
|
[65]
|
Ohishi-Yamazaki M, Watanabe M, Nakanishi A, Che JG, Horiuchi N, et al. 2018. Shortening of the juvenile phase of the southern highbush blueberry (Vaccinium corymbosum L. interspecific hybrid) grown in controlled rooms under artificial light. The Horticulture Journal 87:329−39 doi: 10.2503/hortj.OKD-136
CrossRef Google Scholar
|
[66]
|
Campa C, Urban L, Mondolot L, Fabre D, Roques S, et al. 2017. Juvenile coffee leaves acclimated to low light are unable to cope with a moderate light increase. Frontiers in Plant Science 8:1126 doi: 10.3389/fpls.2017.01126
CrossRef Google Scholar
|
[67]
|
Xu M, Hu T, Poethig RS. 2021. Low light intensity delays vegetative phase change. Plant Physiology 187:1177−88 doi: 10.1093/plphys/kiab243
CrossRef Google Scholar
|
[68]
|
Xie Y, Zhou Q, Zhao Y, Li Q, Liu Y, et al. 2020. FHY3 and FAR1 integrate light signals with the miR156-SPL module-mediated aging pathway to regulate Arabidopsis flowering. Molecular Plant 13:483−98 doi: 10.1016/j.molp.2020.01.013
CrossRef Google Scholar
|
[69]
|
Proveniers M. 2013. Sugars speed up the circle of life. eLife 2:e00625 doi: 10.7554/eLife.00625
CrossRef Google Scholar
|
[70]
|
Xu M, Hu T, Zhao J, Park MY, Earley KW, et al. 2016. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genetics 12:e1006263 doi: 10.1371/journal.pgen.1006263
CrossRef Google Scholar
|
[71]
|
Meng L, Bao Q, Mu X, Tong C, Cao X, et al. 2021. Glucose- and sucrose-signaling modules regulate the Arabidopsis juvenile-to-adult phase transition. Cell Reports 36:109348 doi: 10.1016/j.celrep.2021.109348
CrossRef Google Scholar
|
[72]
|
Yang L, Xu M, Koo Y, He J, Poethig RS. 2013. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife 2:e00260 doi: 10.7554/eLife.00260
CrossRef Google Scholar
|
[73]
|
Ponnu J, Schlereth A, Zacharaki V, Działo MA, Abel C, et al. 2020. The trehalose 6-phosphate pathway impacts vegetative phase change in Arabidopsis thaliana. The Plant Journal 104:768−80 doi: 10.1111/tpj.14965
CrossRef Google Scholar
|
[74]
|
Bajguz A, Tretyn A. 2003. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027−46 doi: 10.1016/s0031-9422(02)00656-8
CrossRef Google Scholar
|
[75]
|
Oklestkova J, Rárová L, Kvasnica M, Strnad M. 2015. Brassinosteroids: synthesis and biological activities. Phytochemistry Reviews 14:1053−72 doi: 10.1007/s11101-015-9446-9
CrossRef Google Scholar
|
[76]
|
Castle J, Szekeres M, Jenkins G, Bishop GJ. 2005. Unique and overlapping expression patterns of Arabidopsis CYP85 genes involved in brassinosteroid C-6 oxidation. Plant Molecular Biology 57:129−40 doi: 10.1007/s11103-004-6851-7
CrossRef Google Scholar
|
[77]
|
Luo L, Zhu Y, Gui J, Yin T, Luo W, et al. 2021. A comparative analysis of transcription networks active in juvenile and mature wood in Populus. Frontiers in Plant Science 12:675075 doi: 10.3389/fpls.2021.675075
CrossRef Google Scholar
|
[78]
|
Cheon J, Park SY, Schulz B, Choe S. 2010. Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction. BMC Plant Biology 10:270 doi: 10.1186/1471-2229-10-270
CrossRef Google Scholar
|
[79]
|
Wang L, Yu P, Lyu J, Hu Y, Han C, et al. 2021. BZR1 physically interacts with SPL9 to regulate the vegetative phase change and cell elongation in Arabidopsis. International Journal of Molecular Sciences 22:10415 doi: 10.3390/ijms221910415
CrossRef Google Scholar
|
[80]
|
Mutasa-Göttgens E, Hedden P. 2009. Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany 60:1979−89 doi: 10.1093/jxb/erp040
CrossRef Google Scholar
|
[81]
|
Chien JC, Sussex IM. 1996. Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana (L.) Heynh. Plant Physiology 111:1321−28 doi: 10.1104/pp.111.4.1321
CrossRef Google Scholar
|
[82]
|
Telfer A, Bollman KM, Poethig RS. 1997. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 124:645−54 doi: 10.1242/dev.124.3.645
CrossRef Google Scholar
|
[83]
|
Silverstone AL, Mak PYA, Martinez EC, Sun T. 1997. The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146:1087−99 doi: 10.1093/genetics/146.3.1087
CrossRef Google Scholar
|
[84]
|
Dill A, Sun T. 2001. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777−85 doi: 10.1093/genetics/159.2.777
CrossRef Google Scholar
|
[85]
|
Wadhi M, Ram HYM. 1967. Shortening the juvenile phase for flowering in Kalanchoe pinnata Pers. Planta 73:28−36 doi: 10.1007/BF00419838
CrossRef Google Scholar
|
[86]
|
Evans MMS, Poethig RS. 1995. Gibberellins promote vegetative phase change and reproductive maturity in maize. Plant Physiology 108:475−87 doi: 10.1104/pp.108.2.475
CrossRef Google Scholar
|
[87]
|
Wei X, Wu S, Liang X, Wang K, Li Y, et al. 2021. Paclobutrazol modulates endogenous level of phytohormones in inducing early flowering in Camellia tamdaoensis Hakoda et Ninh, a golden camellia species. HortScience 56:1258−62 doi: 10.21273/HORTSCI16042-21
CrossRef Google Scholar
|
[88]
|
Osadchuk K, Cheng CL, Irish EE. 2019. Jasmonic acid levels decline in advance of the transition to the adult phase in maize. Plant Direct 3:e00180 doi: 10.1002/pld3.180
CrossRef Google Scholar
|
[89]
|
Beydler B, Osadchuk K, Cheng CL, Manak JR, Irish EE. 2016. The juvenile phase of maize sees upregulation of stress-response genes and is extended by exogenous jasmonic acid. Plant Physiology 171:2648−58 doi: 10.1104/pp.15.01707
CrossRef Google Scholar
|
[90]
|
Hause B, Demus U, Teichmann C, Parthier B, Wasternack C. 1996. Developmental and tissue-specific expression of JIP-23, a jasmonate-inducible protein of barley. Plant Cell and Physiology 37:641−49 doi: 10.1093/oxfordjournals.pcp.a028993
CrossRef Google Scholar
|
[91]
|
Hibara KI, Isono M, Mimura M, Sentoku N, Kojima M, et al. 2016. Jasmonate regulates juvenile-to-adult phase transition in rice. Development 143:3407−16 doi: 10.1242/dev.138602
CrossRef Google Scholar
|
[92]
|
Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, et al. 2003. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. The Plant Cell 15:2532−50 doi: 10.1105/tpc.014928
CrossRef Google Scholar
|
[93]
|
Werner S, Bartrina I, Schmülling T. 2021. Cytokinin regulates vegetative phase change in Arabidopsis thaliana through the miR172/TOE1-TOE2 module. Nature Communications 12:5816 doi: 10.1038/s41467-021-26088-z
CrossRef Google Scholar
|
[94]
|
Werner S, Bartrina I, Novák O, Strnad M, Werner T, et al. 2021. The cytokinin status of the epidermis regulates aspects of vegetative and reproductive development in Arabidopsis thaliana. Frontiers in Plant Science 12:613488 doi: 10.3389/fpls.2021.613488
CrossRef Google Scholar
|
[95]
|
Saleh O, Issman N, Seumel GI, Stav R, Samach A, et al. 2011. MicroRNA534a control of BLADE-ON-PETIOLE 1 and 2 mediates juvenile-to-adult gametophyte transition in Physcomitrella patens. The Plant Journal 5:661−74 doi: 10.1111/j.1365-313X.2010.04451.x
CrossRef Google Scholar
|
[96]
|
Finkelstein RR, Rock CD. 2002. Abscisic acid biosynthesis and response. The Arabidopsis Book 2002:e0058 doi: 10.1199/tab.0058
CrossRef Google Scholar
|
[97]
|
Wang Z, Wang Y, Yu Q, Li Q, Li Y. 2019. Effects of shortening juvenescent phase techniques on hormones in roots and leaves of starkrimson seedlings. Deciduous Fruit Trees 51:14−15 doi: 10.13855/j.cnki.lygs.2019.04.005
CrossRef Google Scholar
|
[98]
|
Guo C, Xu Y, Shi M, Lai Y, Wu X, et al. 2017. Repression of miR156 by miR159 regulates the timing of the juvenile-to-adult transition in Arabidopsis. The Plant Cell 29:1293−304 doi: 10.1105/tpc.16.00975
CrossRef Google Scholar
|
[99]
|
Matsoukas IG. 2014. Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Frontiers in Genetics 5:218 doi: 10.3389/fgene.2014.00218
CrossRef Google Scholar
|
[100]
|
Aukerman MJ, Sakai H. 2003. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. The Plant Cell 15:2730−41 doi: 10.1105/tpc.016238
CrossRef Google Scholar
|
[101]
|
Cardon GH, Höhmann S, Nettesheim K, Saedler H, Huijser P. 1997. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. The Plant Journal 12:367−77 doi: 10.1046/j.1365-313x.1997.12020367.x
CrossRef Google Scholar
|
[102]
|
Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, et al. 2011. miRNA control of vegetative phase change in trees. PLoS Genetics 7:e1002012 doi: 10.1371/journal.pgen.1002012
CrossRef Google Scholar
|
[103]
|
Ye B, Zhang K, Wang J. 2020. The role of miR156 in rejuvenation in Arabidopsis thaliana. Journal of Integrative Plant Biology 62:550−55 doi: 10.1111/jipb.12855
CrossRef Google Scholar
|
[104]
|
Xing L, Zhang D, Li Y, Zhao C, Zhang S, et al. 2014. Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genomics 15:1125 doi: 10.1186/1471-2164-15-1125
CrossRef Google Scholar
|
[105]
|
Li S, Yang X, Wu F, He Y. 2012. HYL1 controls the miR156-mediated juvenile phase of vegetative growth. Journal of Experimental Botany 63:2787−98 doi: 10.1093/jxb/err465
CrossRef Google Scholar
|
[106]
|
He J, Xu M, Willmann MR, McCormick K, Hu T, et al. 2018. Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. PLoS Genetics 14:e1007337 doi: 10.1371/journal.pgen.1007337
CrossRef Google Scholar
|
[107]
|
Gao J, Zhang K, Cheng Y, Yu S, Shang G, et al. 2022. A robust mechanism for resetting juvenility during each generation in Arabidopsis. Nature Plants 8:257−68 doi: 10.1038/s41477-022-01110-4
CrossRef Google Scholar
|
[108]
|
Hanano S, Goto K. 2011. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. The Plant Cell 23:3172−84 doi: 10.1105/tpc.111.088641
CrossRef Google Scholar
|
[109]
|
Hanzawa Y, Money T, Bradley D. 2005. A single amino acid converts a repressor to an activator of flowering. Proceedings of the National Academy of Sciences of the United States of America 102:7748−53 doi: 10.1073/pnas.0500932102
CrossRef Google Scholar
|
[110]
|
Zheng J, Ma Y, Zhang M, Lyu M, Yuan Y, et al. 2019. Expression pattern of FT/TFL1 and miR156-targeted SPL genes associated with developmental stages in Dendrobium catenatum. International Journal of Molecular Sciences 20:2725 doi: 10.3390/ijms20112725
CrossRef Google Scholar
|
[111]
|
Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, et al. 2010. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant and Cell Physiology 51:561−75 doi: 10.1093/pcp/pcq021
CrossRef Google Scholar
|
[112]
|
Nakatsuka T, Abe Y, Kakizaki Y, Kubota A, Shimada N, et al. 2009. Over-expression of Arabidopsis FT gene reduces juvenile phase and induces early flowering in ornamental gentian plants. Euphytica 168:113−19 doi: 10.1007/s10681-009-9899-2
CrossRef Google Scholar
|
[113]
|
Li Y, Zhang B, Wang Y, Gong X, Yu H. 2021. DOTFL1 affects the floral transition in orchid Dendrobium Chao Praya Smile. Plant Physiology 186:2021−36 doi: 10.1093/plphys/kiab200
CrossRef Google Scholar
|
[114]
|
Xu Y, Guo C, Zhou B, Li C, Wang H, et al. 2016. Regulation of vegetative phase change by SWI2/SNF2 chromatin remodeling ATPase BRAHMA. Plant Physiology 172:2416−28 doi: 10.1104/pp.16.01588
CrossRef Google Scholar
|
[115]
|
Feng S, Jacobsen SE, Reik W. 2010. Epigenetic reprogramming in plant and animal development. Science 330:622−27 doi: 10.1126/science.1190614
CrossRef Google Scholar
|
[116]
|
Bitonti MB, Cozza R, Chiappetta A, Giannino D, Ruffini Castiglione M, et al. 2002. Distinct nuclear organization, DNA methylation pattern and cytokinin distribution mark juvenile, juvenile-like and adult vegetative apical meristems in peach (Prunus persica (L.) Batsch). Journal of Experimental Botany 53:1047−54 doi: 10.1093/jexbot/53.371.1047
CrossRef Google Scholar
|
[117]
|
Chua YL, Channelière S, Mott E, Gray JC. 2005. The bromodomain protein GTE6 controls leaf development in Arabidopsis by histone acetylation at ASYMMETRIC LEAVES1. Genes Development 19:2245−54 doi: 10.1101/gad.352005
CrossRef Google Scholar
|
[118]
|
Kim JY, Oh JE, Noh YS, Noh B. 2015. Epigenetic control of juvenile-to-adult phase transition by the Arabidopsis SAGA-like complex. The Plant Journal 83:537−45 doi: 10.1111/tpj.12908
CrossRef Google Scholar
|
[119]
|
Hu T, Manuela D, Hinsch V, Xu M. 2022. PICKLE associates with histone deacetylase 9 to mediate vegetative phase change in Arabidopsis. New Phytologist 235:1070−81 doi: 10.1111/nph.18174
CrossRef Google Scholar
|
[120]
|
Calonje M. 2014. PRC1 marks the difference in plant PcG repression. Molecular Plant 7:459−71 doi: 10.1093/mp/sst150
CrossRef Google Scholar
|
[121]
|
Picó S, Ortiz-Marchena MI, Merini W, Calonje M. 2015. Deciphering the role of POLYCOMB REPRESSIVE COMPLEX1 variants in regulating the acquisition of flowering competence in Arabidopsis. Plant Physiology 168:1286−97 doi: 10.1104/pp.15.00073
CrossRef Google Scholar
|
[122]
|
Yan R, Wang Z, Ren Y, Li H, Liu N, et al. 2019. Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven. International Journal of Molecular Sciences 20:2920 doi: 10.3390/ijms20122920
CrossRef Google Scholar
|