[1] |
Kong Q, Wu T, Zhang J, Wang DY. 2018. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Composites Science and Technology 154:136−44 doi: 10.1016/j.compscitech.2017.10.013 |
[2] |
Gholipour-Mahmoudalilou M, Roghani-Mamaqani H, Azimi R, Abdollahi A. 2018. Preparation of hyperbranched poly (amidoamine)-grafted graphene nanolayers as a composite and curing agent for epoxy resin. Applied Surface Science 428:1061−69 doi: 10.1016/j.apsusc.2017.09.237 |
[3] |
Fang F, Song P, Ran S, Guo Z, Wang H, et al. 2018. A facile way to prepare phosphorus-nitrogen-functionalized graphene oxide for enhancing the flame retardancy of epoxy resin. Composites Communications 10:97−102 doi: 10.1016/j.coco.2018.08.001 |
[4] |
Xu B, Zhang Q, Zhou H, Qian L, Zhao S. 2023. Small change, big impact: Simply changing the substitute on Si atom towards significant improvement of flame retardancy and toughness of epoxy resins. Composites Part B: Engineering 263:110832 doi: 10.1016/j.compositesb.2023.110832 |
[5] |
Xu B, Wei S, Liu Y, Wu M. 2023. Effects of different metal ions in phosphonitrile-modified organometallic complexes on flame retardancy of epoxy resin. Polymer Degradation and Stability 214:110407 doi: 10.1016/j.polymdegradstab.2023.110407 |
[6] |
Li D, Zhang Z, Wang S, Xu M, Li B. 2022. A monomolecular intumescent flame retardant for improvement simultaneously of fire safety, smoke suppression, and mechanical properties of epoxy resin. Journal of Applied Polymer Science 139:52104 doi: 10.1002/app.52104 |
[7] |
Luo F, Wu K, Wang S, Lu M. 2017. Melamine resin/graphite nanoflakes hybrids and its vacuum-assisted prepared epoxy composites with anisotropic thermal conductivity and improved flame retardancy. Composites Science and Technology 144:100−6 doi: 10.1016/j.compscitech.2017.03.025 |
[8] |
Huo S, Yang S, Wang J, Cheng J, Zhang Q, et al. 2020. A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances. Journal of Hazardous Materials 386:121984 doi: 10.1016/j.jhazmat.2019.121984 |
[9] |
Huo S, Yang S, Wang J, Cheng J, Zhang Q, et al. 2020. A Liquid Phosphaphenanthrene-Derived Imidazole for Improved Flame Retardancy and Smoke Suppression of Epoxy Resin. ACS Applied Polymer Materials 2:3566−75 doi: 10.1021/acsapm.0c00577 |
[10] |
Xu B, Wu M, Liu Y, Wei S. 2023. Study on flame retardancy behavior of epoxy resin with phosphaphenanthrene triazine compound and organic zinc complexes based on phosphonitrile. Molecules 28:3069 doi: 10.3390/molecules28073069 |
[11] |
Xu B, Wei S, Liu Y, Zhao S, Qian L. 2022. Preparation of an organometallic complex based on phosphonitrile and its flame retardant application in epoxy resin. Journal of Materials Research and Technology 21:4921−39 doi: 10.1016/j.jmrt.2022.11.099 |
[12] |
Lou G, Rao Q, Li Q, Bai Z, He X, et al. 2023. Novel ionic complex with flame retardancy and ultrastrong toughening effect on epoxy resin. Chemical Engineering Journal 455:139334 doi: 10.1016/j.cej.2022.139334 |
[13] |
Xu B, Liu Y, Wei S, Zhao S, Qian L, et al. 2022. A Phosphorous-Based Bi-Functional Flame Retardant Based on Phosphaphenanthrene and Aluminum Hypophosphite for an Epoxy Thermoset. International Journal of Molecular Sciences 23:11256 doi: 10.3390/ijms231911256 |
[14] |
Ma W, Xu B, Shao L, Liu Y, Chen Y, et al. 2019. Synthesis of (1,4-Methylenephenylphosphinic acid) Piperazine and Its Application as a Flame Retardant in Epoxy Thermosets. Macromolecular Materials and Engineering 304:1900419 doi: 10.1002/mame.201900419 |
[15] |
Huo S, Song P, Yu B, Ran S, Chevali VS, et al. 2021. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives. Progress in Polymer Science 114:101366 doi: 10.1016/j.progpolymsci.2021.101366 |
[16] |
He W, Song P, Yu B, Fang Z, Wang H. 2020. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Progress in Materials Science 114:100687 doi: 10.1016/j.pmatsci.2020.100687 |
[17] |
Xue Y, Shen M, Zeng S, Zhang W, Hao L, et al. 2019. A novel strategy for enhancing the flame resistance, dynamic mechanical and the thermal degradation properties of epoxy nanocomposites. Materials Research Express 6(12):125003 doi: 10.1088/2053-1591/ab537f |
[18] |
Huang G, Chen W, Wu T, Guo H, Fu C, et al. 2021. Multifunctional graphene-based nano-additives toward high-performance polymer nanocomposites with enhanced mechanical, thermal, flame retardancy and smoke suppressive properties. Chemical Engineering Journal 410:127590 doi: 10.1016/j.cej.2020.127590 |
[19] |
Xue Y, Feng J, Huo S, Song P, Yu B, et al. 2020. Polyphosphoramide-intercalated MXene for simultaneously enhancing thermal stability, flame retardancy and mechanical properties of polylactide. Chemical Engineering Journal 397:125336 doi: 10.1016/j.cej.2020.125336 |
[20] |
Zhang Y, Jing J, Liu T, Xi L, Sai T, et al. 2021. A molecularly engineered bioderived polyphosphate for enhanced flame retardant, UV-blocking and mechanical properties of poly(lactic acid). Chemical Engineering Journal 411:128493 doi: 10.1016/j.cej.2021.128493 |
[21] |
Xu Y, Liu L, Yan C, Hong Y, Xu M, et al. 2021. Eco-friendly phosphonic acid piperazine salt toward high-efficiency smoke suppression and flame retardancy for epoxy resins. Journal of Materials Science 56:16999−7010 doi: 10.1007/s10853-021-06384-1 |
[22] |
Feng J, Sun Y, Song P, Lei W, Wu Q, et al. 2017. Fire-resistant, strong, and green polymer nanocomposites based on poly(lactic acid) and core-shell nanofibrous flame retardants. ACS Sustainable Chemistry & Engineering 5:7894−904 doi: 10.1021/acssuschemeng.7b01430 |
[23] |
Yin W, Chen L, Lu F, Song P, Dai J, et al. 2018. Mechanically robust, flame-retardant poly(lactic acid) biocomposites via combining cellulose nanofibers and ammonium polyphosphate. ACS Omega 3:5615−26 doi: 10.1021/acsomega.8b00540 |
[24] |
Yang H, Shi B, Xue Y, Ma Z, Liu L, et al. 2021. Molecularly engineered lignin-derived additives enable fire-retardant, UV-shielding, and mechanically strong polylactide biocomposites. Biomacromolecules 22:1432−44 doi: 10.1021/acs.biomac.0c01656 |
[25] |
Liu L, Qian M, Song Pa, Huang G, Yu Y, et al. 2016. Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites. ACS Sustainable Chemistry & Engineering 4:2422−31 doi: 10.1021/acssuschemeng.6b00112 |
[26] |
Liu L, Huang G, Song P, Yu Y, Fu S. 2016. Converting industrial alkali lignin to biobased functional additives for improving fire behavior and smoke suppression of polybutylene succinate. ACS Sustainable Chemistry & Engineering 4:4732−42 doi: 10.1021/acssuschemeng.6b00955 |
[27] |
Yang H, Yu B, Xu X, Bourbigot S, Wang H, et al. 2020. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chemistry 22:2129−61 doi: 10.1039/D0GC00449A |
[28] |
Lou G, Ma Z, Dai J, Bai Z, Fu S, et al. 2021. Fully biobased surface-functionalized microcrystalline cellulose via green self-assembly toward fire-retardant, strong, and tough epoxy biocomposites. ACS Sustainable Chemistry & Engineering 9:13595−605 doi: 10.1021/acssuschemeng.1c04718 |
[29] |
Mendis GP, Weiss SG, Korey M, Boardman CR, Dietenberger M, et al. 2016. Phosphorylated lignin as a halogen-free flame retardant additive for epoxy composites. Green Materials 4:150−59 doi: 10.1680/jgrma.16.00008 |
[30] |
Guo W, Wang X, Gangireddy CSR, Wang J, Pan Y, et al. 2019. Cardanol derived benzoxazine in combination with boron-doped graphene toward simultaneously improved toughening and flame retardant epoxy composites. Composites Part A: Applied Science and Manufacturing 116:13−23 doi: 10.1016/j.compositesa.2018.10.010 |
[31] |
Wang X, Zhou S, Guo WW, Wang PL, Xing W, et al. 2017. Renewable cardanol-based phosphate as a flame retardant toughening agent for epoxy resins. ACS Sustainable Chemistry & Engineering 5:3409−16 doi: 10.1021/acssuschemeng.7b00062 |
[32] |
Li C, Wan J, Kalali EN, Fan H, Wang DY. 2015. Synthesis and characterization of functional eugenol derivative based layered double hydroxide and its use as a nanoflame-retardant in epoxy resin. Journal of Materials Chemistry A 3:3471−79 doi: 10.1039/C4TA05740F |
[33] |
Fang F, Huo S, Shen H, Ran S, Wang H, et al. 2020. A bio-based ionic complex with different oxidation states of phosphorus for reducing flammability and smoke release of epoxy resins. Composites Communications 17:104−8 doi: 10.1016/j.coco.2019.11.011 |
[34] |
Zhu ZM, Shang K, Wang LX, Wang JS. 2019. Synthesis of an effective bio-based flame-retardant curing agent and its application in epoxy resin: Curing behavior, thermal stability and flame retardancy. Polymer Degradation and Stability 167:179−88 doi: 10.1016/j.polymdegradstab.2019.07.005 |
[35] |
Wang P, Liao D, Hu X, Pan N, Li W, et al. 2019. Facile fabrication of biobased P−N−C-containing nano-layered hybrid: Preparation, growth mechanism and its efficient fire retardancy in epoxy. Polymer Degradation and Stability 159:153−62 doi: 10.1016/j.polymdegradstab.2018.11.024 |
[36] |
Zhang J, Mi X, Chen S, Xu Z, Zhang D, et al. 2020. A bio-based hyperbranched flame retardant for epoxy resins. Chemical Engineering Journal 381:122719 doi: 10.1016/j.cej.2019.122719 |
[37] |
Yang D, Dong L, Hou X, Zheng W, Xiao J, et al. 2020. Synthesis of bio-based poly (cyclotriphosphazene-resveratrol) microspheres acting as both flame retardant and reinforcing agent to epoxy resin. Polymers for Advanced Technologies 31:135−45 doi: 10.1002/pat.4755 |
[38] |
Li Z, Liu Z, Zhang J, Fu C, Wagenknecht U, et al. 2019. Bio-based layered double hydroxide nanocarrier toward fire-retardant epoxy resin with efficiently improved smoke suppression. Chemical Engineering Journal 378:122046 doi: 10.1016/j.cej.2019.122046 |
[39] |
Zhao X, Xiao D, Alonso JP, Wang DY. 2017. Inclusion complex between beta-cyclodextrin and phenylphosphonicdiamide as novel bio-based flame retardant to epoxy: Inclusion behavior, characterization and flammability. Materials & Design 114:623−32 doi: 10.1016/j.matdes.2016.11.093 |
[40] |
Gao YY, Deng C, Du YY, Huang SC, Wang YZ. 2019. A novel bio-based flame retardant for polypropylene from phytic acid. Polymer Degradation and Stability 161:298−308 doi: 10.1016/j.polymdegradstab.2019.02.005 |
[41] |
Wang D, Wang Y, Li T, Zhang S, Ma P, et al. 2020. A bio-based flame-retardant starch based on phytic acid. ACS Sustainable Chemistry & Engineering 8:10265−74 doi: 10.1021/acssuschemeng.0c03277 |
[42] |
Wang WZ, Zhang YH. 2010. Synthesis of semiaromatic polyamides based on decanediamine. Chinese Journal of Polymer Science 28:467−73 doi: 10.1007/s10118-010-9049-2 |
[43] |
Zhang T, Yan H, Shen L, Fang Z, Zhang X, et al. 2014. A phosphorus-, nitrogen- and carbon-containing polyelectrolyte complex: preparation, characterization and its flame retardant performance on polypropylene. RSC Advances 4:48285−92 doi: 10.1039/C4RA09243K |
[44] |
Zhu ZM, Xu YJ, Liao W, Xu S, Wang YZ. 2017. Highly flame retardant expanded polystyrene foams from Phosphorus–Nitrogen–Silicon synergistic adhesives. Industrial & Engineering Chemistry Research 56:4649−58 doi: 10.1021/acs.iecr.6b05065 |
[45] |
Tan Y, Shao ZB, Yu LX, Long JW, Qi M, et al. 2016. Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: flame retardance, curing behavior and mechanical property. Polymer Chemistry 7:3003−12 doi: 10.1039/C6PY00434B |
[46] |
Ali Lakho D, Yao D, Cho K, Ishaq M, Wang Y. 2017. Study of the curing kinetics toward development of fast-curing epoxy resins. Polymer-Plastics Technology and Engineering 56:161−70 doi: 10.1080/03602559.2016.1185623 |
[47] |
Laufer G, Kirkland C, Morgan AB, Grunlan JC. 2012. Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton. Biomacromolecules 13:2843−48 doi: 10.1021/bm300873b |
[48] |
Gao M, Wu W, Yan Y. 2009. Thermal degradation and flame retardancy of epoxy resins containing intumescent flame retardant. Journal of Thermal Analysis and Calorimetry 95:605−4 doi: 10.1007/s10973-008-9766-8 |
[49] |
Yan YW, Chen L, Jian RK, Kong S, Wang YZ. 2012. Intumescence: An effect way to flame retardance and smoke suppression for polystryene. Polymer Degradation and Stability 97:1423−31 doi: 10.1016/j.polymdegradstab.2012.05.013 |
[50] |
Breulet H, Steenhuizen T. 2005. Fire testing of cables: comparison of SBI with FIPEC/Europacable tests. Polymer Degradation and Stability 88:150−58 doi: 10.1016/j.polymdegradstab.2004.01.031 |
[51] |
Xing W, Zhang P, Song L, Wang X, Hu Y. 2014. Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating. Materials Research Bulletin 49:1−6 doi: 10.1016/j.materresbull.2013.08.033 |
[52] |
Yang G, Wu WH, Wang YH, Jiao YH, Lu LY, et al. 2019. Synthesis of a novel phosphazene-based flame retardant with active amine groups and its application in reducing the fire hazard of Epoxy Resin. Journal of Hazardous Materials 366:78−87 doi: 10.1016/j.jhazmat.2018.11.093 |
[53] |
Lou G, Pei G, Wu Y, Lu Y, Wu Y, et al. 2021. Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors. Chemical Engineering Journal 413:127502 doi: 10.1016/j.cej.2020.127502 |
[54] |
Zhu W, Kim D, Han M, Jang J, Choi H, et al. 2023. Fibrous cellulose nanoarchitectonics on N-doped Carbon-based Metal-Free catalytic nanofilter for highly efficient advanced oxidation process. Chemical Engineering Journal 460:141593 doi: 10.1016/j.cej.2023.141593 |
[55] |
Luo H, Rao W, Zhao P, Wang L, Liu Y, et al. 2020. An efficient organic/inorganic phosphorus-nitrogen-silicon flame retardant towards low-flammability epoxy resin. Polymer Degradation and Stability 178:109195 doi: 10.1016/j.polymdegradstab.2020.109195 |
[56] |
Song J, Chen C, Zhu S, Zhu M, Dai J, et al. 2018. Processing bulk natural wood into a high-performance structural material. Nature 554:224−28 doi: 10.1038/nature25476 |
[57] |
Xiao L, Huang J, Wang Y, Chen J, Liu Z, et al. 2019. Tung Oil-based modifier toughening epoxy resin by sacrificial bonds. ACS Sustainable Chemistry & Engineering 7:17344−53 doi: 10.1021/acssuschemeng.9b04284 |
[58] |
Wang X, Peng J, Zhang Y, Li M, Saiz E, et al. 2018. Ultratough bioinspired graphene fiber via sequential toughening of hydrogen and ionic bonding. ACS Nano 12:12638−45 doi: 10.1021/acsnano.8b07392 |