[1]

Zhang L, Chen F, Zhang X, Li Z, Zhao Y, et al. 2020. The water lily genome and the early evolution of flowering plants. Nature 577:79−84

doi: 10.1038/s41586-019-1852-5
[2]

Lozano R, Hamblin MT, Prochnik S, Jannink JL. 2015. Identification and distribution of the NBS-LRR gene family in the Cassava genome. Bmc Genomics 16:360

doi: 10.1186/s12864-015-1554-9
[3]

Ashihara H, Deng WW, Mullen W, Crozier A. 2010. Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry 71:559−566

doi: 10.1016/j.phytochem.2010.01.010
[4]

Zhang W, Zhang Y, Qiu H, Guo Y, Wan H, et al. 2020. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications 11:3719

doi: 10.1038/s41467-020-17498-6
[5]

Zhang QJ, Li W, Li K, Nan H, Shi C, et al. 2020. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution. Molecular Plant 13:935−938

doi: 10.1016/j.molp.2020.04.009
[6]

Lin P, Wang K, Wang Y, Hu Z, Yan C, et al. 2022. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication. Genome Biology 23:14

doi: 10.1186/s13059-021-02599-2
[7]

Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology 16:157

doi: 10.1186/s13059-015-0721-2
[8]

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:403−10

doi: 10.1016/S0022-2836(05)80360-2
[9]

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, et al. 2018. HMMER web server: 2018 update. Nucleic Acids Research 46:W200−W204

doi: 10.1093/nar/gky448
[10]

Guo L, Gao L, Ma X, Guo F, Ruan H, et al. 2019. Functional analysis of flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylases from tea plant (Camellia sinensis), involved in the B-ring hydroxylation of flavonoids. Gene 717:144046

doi: 10.1016/j.gene.2019.144046
[11]

Wang YS, Xu YJ, Gao LP, Yu O, Wang XZ, et al. 2014. Functional analysis of flavonoid 3',5'-hydroxylase from tea plant (Camellia sinensis): critical role in the accumulation of catechins. BMC Plant Biology 14:347

doi: 10.1186/s12870-014-0347-7
[12]

Wei K, Wang L, Zhang C, Wu L, Li H, et al. 2015. Transcriptome analysis reveals key flavonoid 3'-hydroxylase and flavonoid 3',5'-hydroxylase genes in affecting the ratio of dihydroxylated to trihydroxylated catechins in Camellia sinensis. Plos ONE 10:e137925

doi: 10.1371/journal.pone.0137925
[13]

Xiong S, Tian N, Long J, Chen Y, Qin Y, et al. 2016. Molecular cloning and characterization of a flavanone 3-Hydroxylase gene from Artemisia annua L. Plant Physiology and Biochemistry 105:29−36

doi: 10.1016/j.plaphy.2016.04.005
[14]

The UniProt Consortium. 2023. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Research 51:D523−D531

doi: 10.1093/nar/gkac1052
[15]

Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150−52

doi: 10.1093/bioinformatics/bts565
[16]

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, et al. 2021. Pfam: The protein families database in 2021. Nucleic Acids Research 49:D412−D419

doi: 10.1093/nar/gkaa913
[17]

Letunic I, Khedkar S, Bork P. 2021. SMART: recent updates, new developments and status in 2020. Nucleic Acids Research 49:D458−D460

doi: 10.1093/nar/gkaa937
[18]

Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, et al. 2017. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research 45:D200−D203

doi: 10.1093/nar/gkw1129
[19]

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972−73

doi: 10.1093/bioinformatics/btp348
[20]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022−27

doi: 10.1093/molbev/msab120
[21]

Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME Suite. Nucleic Acids Research 43:W39−W49

doi: 10.1093/nar/gkv416
[22]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[23]

Cui L, Yao S, Dai X, Yin Q, Liu Y, et al. 2016. Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis). Journal of Experimental Botany 67:2285−97

doi: 10.1093/jxb/erw053
[24]

Yao S, Liu Y, Zhuang J, Zhao Y, Dai X, et al. 2022. Insights into acylation mechanisms: co-expression of serine carboxypeptidase-like acyltransferases and their non-catalytic companion paralogs. The Plant Journal 111:117−33

doi: 10.1111/tpj.15782
[25]

Singh K, Kumar S, Rani A, Gulati A, Ahuja PS. 2009. Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Functional & Integrative Genomics 9:125−34

doi: 10.1007/s10142-008-0092-9
[26]

Singh K, Rani A, Kumar S, Sood P, Mahajan M, et al. 2008. An early gene of the flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with the concentration of catechins in tea (Camellia sinensis). Tree Physiology 28:1349−56

doi: 10.1093/treephys/28.9.1349
[27]

Lin GZ, Lian YJ, Ryu JH, Sung MK, Park JS, et al. 2007. Expression and purification of His-tagged flavonol synthase of Camellia sinensis from Escherichia coli. Protein Expression and Purification 55:287−92

doi: 10.1016/j.pep.2007.05.013
[28]

Initiative TAG. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796−815

doi: 10.1038/35048692
[29]

Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, et al. 2007. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. Plos ONE 2:e1326

doi: 10.1371/journal.pone.0001326
[30]

Zhang X, Chen S, Shi L, Gong D, Zhang S, et al. 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics 53:1250−59

doi: 10.1038/s41588-021-00895-y
[31]

Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, et al. 2013. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4

doi: 10.1186/1939-8433-6-4
[32]

Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao YY, et al. 2017. The Apostasia genome and the evolution of orchids. Nature 549:379−83

doi: 10.1038/nature23897
[33]

Amborella Genome Project , Albert VA, Barbazuk WB, Depamphilis CW, DER JP, et al. 2013. The Amborella genome and the evolution of flowering plants. Science 342:1241089

doi: 10.1126/science.1241089
[34]

Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596−604

doi: 10.1126/science.1128691
[35]

Wang P, Yu J, Jin S, Chen S, Yue C, et al. 2021. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research 8:107

doi: 10.1038/s41438-021-00542-x
[36]

Olsen JL, Rouzé P, Verhelst B, Lin YC, Bayer T, et al. 2016. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530:331−35

doi: 10.1038/nature16548
[37]

Chaw SM, Liu YC, Wu YW, Wang HY, Lin CYI, et al. 2019. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nature Plants 5:63−73

doi: 10.1038/s41477-018-0337-0
[38]

Wu H, Ma T, Kang M, Ai F, Zhang J, et al. 2019. A high-quality Actinidia chinensis (kiwifruit) genome. Horticulture Research 6:117

doi: 10.1038/s41438-019-0202-y
[39]

Zhang X, Wang G, Zhang S, Chen S, Wang Y, et al. 2020. Genomes of the banyan tree and pollinator wasp provide insights into fig-wasp coevolution. Cell 183:875−889.E17

doi: 10.1016/j.cell.2020.09.043
[40]

Wang X, Feng H, Chang Y, Ma C, Wang L, et al. 2020. Population sequencing enhances understanding of tea plant evolution. Nature Communications 11:4447

doi: 10.1038/s41467-020-18228-8
[41]

Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant 13:1013−1026

doi: 10.1016/j.molp.2020.04.010
[42]

Eichten SR, Foerster JM, de Leon N, Kai Y, Yeh CT, et al. 2011. B73-Mo17 near-isogenic lines demonstrate dispersed structural variation in maize. Plant Physiology 156:1679−90

doi: 10.1104/pp.111.174748
[43]

Harkess A, Zhou J, Xu C, Bowers JE, Van der Hulst R, et al. 2017. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nature Communications 8:1279

doi: 10.1038/s41467-017-01064-8
[44]

Wang Z, Miao H, Liu J, Xu B, Yao X, et al. 2019. Musa balbisiana genome reveals subgenome evolution and functional divergence. Nature Plants 5:810−21

doi: 10.1038/s41477-019-0452-6
[45]

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research 35:W182−W185

doi: 10.1093/nar/gkm321
[46]

Werck-Reichhart D, Feyereisen R. 2000. Cytochromes P450: a success story. Genome Biology 1:reviews3003.1

doi: 10.1186/gb-2000-1-6-reviews3003
[47]

Ding Q, Wang F, Xue J, Yang X, Fan J, et al. 2020. Identification and expression analysis of hormone biosynthetic and metabolism genes in the 2OGD family for identifying genes that may be involved in tomato fruit ripening. International Journal of Molecular Sciences 21:5344

doi: 10.3390/ijms21155344
[48]

Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, et al. 2023. InterPro in 2022. Nucleic Acids Research 51:D418−D427

doi: 10.1093/nar/gkac993
[49]

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, et al. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674−76

doi: 10.1093/bioinformatics/bti610