[1]

Atapattu AAAJ, Senarathne SHS, Raveendra SAST, Egodawatte WCP, Mensah S. 2017b. Effect of short-term agroforestry systems on soil quality in marginal coconut lands in Sri Lanka. Agricultural Research Journal 54(3):324−28

doi: 10.5958/2395-146X.2017.00060.6
[2]

Nuwarapaksha TD, Udumann SS, Dissanayaka DMNS, Dissanayake DKRPL, Atapattu AJ. 2022. Coconut based multiple cropping systems: An analytical review in Sri Lankan coconut cultivations. Circular Agricultural Systems 2:8

doi: 10.48130/CAS-2022-0008
[3]

Senarathne SHS, Atapattu AJ, Raveendra T, Mensah S. Dassanayake KB. 2018. Biomass allocation and growth performance of Tithonia diversifolia (Hemsl.) a gray in coconut plantations in Sri Lanka. Agroforestry Systems 9:1865−75

doi: 10.1007/s10457-018-0290-y
[4]

Dissanayaka DMNS, Nuwarapaksha TD, Udumann SS, Dissanayake DKRPL, Atapattu AJ. 2022. A sustainable way of increasing productivity of coconut cultivation using cover crops: A review. Circular Agricultural Systems 2:7

doi: 10.48130/CAS-2022-0007
[5]

Senarathne SHS, Udumann SS. 2022. Effect of selected leguminous cover crop species on the productivity of coconut cultivated in reddish brown latosolic soils in Sri Lanka. CORD 37:33−44

doi: 10.37833/cord.v37i.435
[6]

Wabwoba MS, Mutoro K. 2019. Promoting mucuna beans production for soil rehabilitation, incomes, food and nutrition security in Kenya. Global Journal of Nutrition & Food Science 2(4):1−6

doi: 10.33552/GJNFS.2019.02.000543
[7]

Dongsansuk A, Ayutthaya SIN, Kaewjumpa N, Polthanee A. 2016. Photosynthetic efficiency of PSII and growth of young rubber tree (Hevea brasiliensis) planted with Mucuna (Mucuna bracteate) cover crop. Asia-Pacific Journal of Science and Technology 21(3):12−27

doi: 10.14456/apst.2016.2
[8]

Coconut Research Institute of Sri Lanka. 2018. Growing of cover crops in coconut land. Advisory Circular No A 10. Sri Lanka: Coconut Research Institute of Sri Lanka. https://cri.gov.lk/wp-content/uploads/2021/10/a10.pdf

[9]

Intharuksa A, Denduangboripant J, Chansakaow S, Thongkhao K, Sukrong S. 2023. HPLC and DNA barcoding profiles for identification of the selected twelve Mucuna species and its application for detecting prohibited aphrodisiac Mucuna products. Heliyon 9(3):14130

doi: 10.1016/j.heliyon.2023.e14130
[10]

Ortiz Ceballos AI, Aguirre Rivera JR, Osorio Arce MM, Pea C. 2012. Velvet bean (Mucuna pruriens var. utilis) a cover crop as bioherbicide to preserve the environmental services of soil. In Herbicides - Environmental Impact Studies and Management Approaches, ed. Alvarez-Fernandez R. London, UK: IntechOpen. pp. 167−84. https://doi.org/10.5772/31833

[11]

Blomme G, Ntamwira J, Ocimati W. 2022. Mucuna pruriens, Crotalaria juncea, and chickpea (Cicer arietinum) have the potential for improving productivity of banana-based systems in Eastern Democratic Republic of Congo. Legume Science January 4(4):e145

doi: 10.1002/leg3.145
[12]

Kavitha C, Thangamani C. 2014. Amazing bean Mucuna pruriens: A comprehensive review. Journal of Medicinal Plants Research 8(2):138−43

doi: 10.5897/JMPR2013.5036
[13]

Lepcha P, Sathyanarayana N. 2021. Variability for seed-based economic traits and genetic diversity analysis in Mucuna pruriens population of Northeast India. Agricultural Research 11:1−11

doi: 10.1007/s40003-021-00568-6
[14]

Abd Aziz N, Tan BC, Othman RY, Khalid N. 2018. Efficient micropropagation protocol and genome size estimation of an important cover crop, Mucuna bracteata DC. ex Kurz. Plant Cell, Tissue and Organ Culture 132(2):267−78

doi: 10.1007/s11240-017-1376-3
[15]

Correia MV, Pereira LCR, De Almeida L, Williams RL, Freach J, et al. 2014. Maize-mucuna (Mucuna pruriens (L.) DC) relay intercropping in the lowland tropics of Timor-Leste. Field Crops Research 156:272−80

doi: 10.1016/j.fcr.2013.10.011
[16]

Pugalenthi M, Vadivel V, Siddhuraju P. 2005. Alternative food/feed perspectives of an underutilized legume Mucuna pruriens var. utilis - A review. Plant Foods for Human Nutrition, 60(4):201−18

doi: 10.1007/s11130-005-8620-4
[17]

Tang K, Angela J. 2019. Phytoremediation of crude oil-contaminated soil with local plant species. IOP Conference Series:Materials Science and Engineering 495:012054

doi: 10.1088/1757-899X/495/1/012054
[18]

Kanatas P, Gazoulis I, Travlos I, Kakabouki I, Kioussi S, et al. 2020. The effects of tillage on weed suppressive ability, leaf area, seed yield and protein content of Mucuna pruriens var. utilis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(2):871−81

doi: 10.15835/nbha48211887
[19]

Fujii Y. 2003. Allelopathy in the natural and agricultural ecosystems and isolation of potent allelochemicals from Velvet bean (Mucuna pruriens) and Hairy vetch (Vicia villosa). Biological Sciences in Space 17(1):6−13

doi: 10.2187/bss.17.6
[20]

Appiah K, Amoatey C, Fujii Y. 2015. Allelopathic activities of selected Mucuna pruriens on the germination and initial growth of lettuce. International Journal of Basic and Applied Sciences 4(4):475

doi: 10.14419/ijbas.v4i4.5148
[21]

Gbanguba AU, Daniya E, Kolo MGM, Ibrahim PA, Ismaila U, et al. 2020. Effects of pre-rice cassava/legume intercrops and weed management practices on weed dynamics and yield of low land rice in Badeggi, Nigeria. African Journal of Agricultural Research 16(6):829−42

doi: 10.5897/ajar2019.14190
[22]

Herath HMPM, Herath HMIK, Ratnayake WM. 2017. Potential use of Mucuna bracteate as a cover crop for coconut plantations in the low country intermediate zone of Sri Lanka. Journal of Food and Agriculture 10(1−2):26

doi: 10.4038/jfa.v10i1-2.5210
[23]

Cristiana BR, Ivan CZ, Fabiana R, Jhessica B, Pedro VDM, et al. 2018. The effect of velvet bean (Mucuna cinerea) extract on seedling growth of winter cereals. African Journal of Agricultural Research 13(23):1170−76

doi: 10.5897/AJAR2018.13046
[24]

Kaiira MG, Chemining'wa GN, Ayuke F, Baguma Y, Atwijukire E. 2021. Allelopathic potential of compounds in selected crops. Journal of Agricultural Science 13(9):192−201

doi: 10.5539/jas.v13n9p192
[25]

Udensi UE, Akobundu IO, Ayeni AO, Chikoye D. 1999. Management of cogongrass (Imperata cylindrica) with Velvetbean (Mucuna pruriens var. utilis) and herbicides. Weed Technology 13(2):201−8

doi: 10.1017/S0890037X00041610
[26]

Bandara MSPM, Dilshara RMP, Gunarathne DKOB, Senevirathne H, Udayanthika SKI, et al. 2017. Impact of invasion of Cogon grass (Imperata cylindrica) on the physical and chemical properties of soil. Third Undergraduate Research Symposium on Zoology & Environmental Management, University of Kelaniya, Sri Lanka. pp. 163. http://repository.kln.ac.lk/handle/123456789/16679

[27]

Duke JA. 1981. Legume Species. In Handbook of LEGUMES of World Economic Importance, ed. Duke JA. Boston, MA, US: Springer. pp. 5–310. https://doi.org/10.1007/978-1-4684-8151-8_2

[28]

Ennin SA, Dapaah HK, Abaidoo RC. 2009. Nitrogen credits from cowpea, soybean, groundnut and mucuna to maize in rotation. West African Journal of Applied Ecology 6(1):65−74

doi: 10.4314/wajae.v6i1.45610
[29]

Mendham DS, Kumaraswamy S, Balasundaran M, Sankaran KV, Corbeels M, et al. 2004. Legume cover cropping effects on early growth and soil nitrogen supply in eucalypt plantations in south-western India. Biology and Fertility of Soils 39(5):375−82

doi: 10.1007/s00374-004-0719-5
[30]

Chathurika S, Samarappuli L, Mapa RB. 2010. Litter accumulation from Mucuna bracteata cover crop and its effects on some soil chemical properties in rubber plantations. Journal of the Rubber Research Institute of Sri Lanka 90:49−57

doi: 10.4038/jrrisl.v90i0.1829
[31]

Sakiah Sembiring M, Hasibuan J. 2018. Entisol land characteristics with and without cover crop (Mucuna bracteata) on rubber plantation. IOP Conference Series: Earth and Environmental Science 122(1):012043

doi: 10.1088/1755-1315/122/1/012043
[32]

Muoni T, Koomson E, Öborn I, Marohn C, Watson CA, et al. 2020. Reducing soil erosion in smallholder farming systems in east Africa through the introduction of different crop types. Experimental Agriculture, 56(2):183−95

doi: 10.1017/S0014479719000280
[33]

Silva AdoN, Figueiredo CCde, Carvalho AMde, Soares DdosS, Santos DCRdos, et al. 2016. Effects of cover crops on the physical protection of organic matter and soil aggregation. Australian Journal of Crop Science 10(12):1623−29

doi: 10.21475/ajcs.2016.10.12.PNE164
[34]

Wawan Dini IR, Hapsoh. 2019. The effect of legume cover crop Mucuna bracteata on soil physical properties, runoff and erosion in three slopes of immature oil palm plantation. IOP Conference Series: Earth and Environmental Science 250(1):012021

doi: 10.1088/1755-1315/250/1/012021
[35]

Atapattu AAAJ, Raveendra SAST, Liyanagedara DS, Piyaratna MGNCK, Herath HMSK. 2017. The role of soil organisms and functions in different coconut based multiple cropping systems. International Journal of Environmental and Agriculture Research 3:67−84

[36]

Osei BY, Agyarko K, Kyere K, Asiedu EK. 2017. Response of hydro-physical properties of a Chromic Luvisol in Ghana to different methods of application of Mucuna pruriens as a soil amendments. International Journal of Environment, Agriculture and Biotechnology 2(3):2559−59

doi: 10.22161/ijeab/2.5.37
[37]

Tarawali G, Manyong VM, Carsky RJ, Vissoh PV, Osei-Bonsu P, et al. 1999. Adoption of improved fallows in West Africa: lessons from mucuna and stylo case studies. Agroforestry Systems 47(1):93−122

doi: 10.1023/A:1006270122255
[38]

Lopes EA, Dallemole-Giaretta R, dos Santos Neves W, Parreira DF, Ferreira PA. 2019. Eco-friendly approaches to the management of plant-parasitic nematodes. In Plant Health Under Biotic Stress, eds. Ansari R, Mahmood I. Singapore: Springer. pp. 167–86. https://doi.org/10.1007/978-981-13-6043-5_9

[39]

Blanchart E, Villenave C, Viallatoux A, Barthès B, Girardin C, et al. 2006. Long-term effect of a legume cover crop (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in southern Benin. European Journal of Soil Biology 42(1):S136−S144

doi: 10.1016/j.ejsobi.2006.07.018
[40]

Nogueira MA, de Oliveira JS, Ferraz S. 1996. Nematicidal hydrocarbons from Mucuna aterrima. Phytochemistry 42(4):997−98

doi: 10.1016/0031-9422(96)86994-9
[41]

Barros AF, Campos VP, da Silva JCP, Pedroso MP, Medeiros FHV, et al. 2014. Nematicidal activity of volatile organic compounds emitted by Brassica juncea, Azadirachta indica, Canavalia ensiformis, Mucuna pruriens and Cajanus cajan against Meloidogyne incognita. Applied Soil Ecology 80:34−43

doi: 10.1016/j.apsoil.2014.02.011
[42]

Zasada IA, Klassen W, Meyer SLF, Codallo M, Abdul-Baki AA. 2006. Velvetbean (Mucuna pruriens) extracts: Impact on Meloidogyne incognita survival and on Lycopersicon esculentum and Lactuca sativa germination and growth. Pest Management Science 62(11):1122−27

doi: 10.1002/ps.1281
[43]

Samiksha Singh D, Kesavan AK, Sohal SK. 2021. Peptidase inhibitor from Mucuna pruriens seeds inhibits the growth and development of Zeugodacus cucurbitae larvae. Phytoparasitica 49(4):645−57

doi: 10.1007/s12600-021-00901-3
[44]

Muinga RW, Saha HM, Mureithi JG. 2003. The effect of mucuna (Mucuna pruriens) forage on the performance of lactating cows. Tropical and Subtropical Agroecosystems 1:87−91

[45]

Carew LB, Gernat AG. 2006. Use of velvet beans, Mucuna spp., as a feed ingredient for poultry: A review. World’s Poultry Science Journal 62(1):131−44

doi: 10.1079/WPS200590
[46]

Onigemo MA, Anjola OA. 2013. Growth and reproductive performance of pigs fed with raw and differently processed velvet beans (Mucuna Pruriens) as partial replacement for soya bean meal. International Journal of Sustainable Development 6(2):71−76

doi: 10.13140/2.1.2688.0968
[47]

Hauser S, Henrot J, Korie S. 2020. Maize grain and straw yields over 14 consecutive years in burned and mulched Mucuna pruriens var. utilis and Pueraria phaseoloides relay cropping systems. Experimental Agriculture 56(6):851−65

doi: 10.1017/S0014479720000368
[48]

García-Galván A, Belmar-Casso R, Sarmiento-Franco L, Sandoval-Castro CA. 2012. Evaluation of the metabolizable energy value for growing lambs of the Mucuna pruriens seed and the whole pod. Tropical Animal Health and Production 44(4):843−47

doi: 10.1007/s11250-011-9976-0
[49]

Siddhuraju P, Becker K. 2001. Preliminary nutritional evaluation of Mucuna seed meal (Mucuna pruriens var. utilis) in common carp (Cyprinus carpio L.): an assessment by growth performance and feed utilisation. Aquaculture 196(1-2):105−23

doi: 10.1016/S0044-8486(00)00577-9
[50]

Chakoma I, Manyawu G, Gwiriri L, Moyo S, Dube S. 2016. The agronomy and use of Mucuna pruriens in smallholder farming systems in southern Africa. ILRI Extenstion Brief, December. Nairobi, Kenya: International Livestock Research Institute. pp. 1–4. https://cgspace.cgiar.org/bitstream/handle/10568/78515/extension_brief_mucuna.pdf?sequence=1

[51]

Ravindran V, Ravindran G. 1988. Nutritional and anti-nutritional characteristics of mucuna (Mucuna utilis) bean seeds. Journal of the Science of Food and Agriculture 46(1):71−79

doi: 10.1002/jsfa.2740460108
[52]

Jimoh MA, Idris OA, Jimoh MO. 2020. Cytotoxicity, phytochemical, antiparasitic screening, and antioxidant activities of Mucuna pruriens (Fabaceae). Plants 9(9):1249

doi: 10.3390/plants9091249
[53]

Ukachukwu SN, Obioha FC. 2000. Effect of time duration of thermal treatments on the nutritive value of Mucuna chochinchinensis. Global Journal of Pure and Applied Sciences 6(1):11−16

doi: 10.4314/gjpas.v6i1.16096
[54]

Lampariello LR, Cortelazzo A, Guerranti R, Sticozzi C, Valacchi G. 2012. The magic Velvet bean of Mucuna pruriens. Journal of Traditional and Complementary Medicine 2(4):331−339

doi: 10.1016/S2225-4110(16)30119-5
[55]

Rai SN, Chaturvedi VK, Singh P, Singh BK, Singh MP. 2020. Mucuna pruriens in Parkinson’s and in some other diseases: recent advancement and future prospective. 3 Biotech 10(12):522

doi: 10.1007/s13205-020-02532-7
[56]

Bhaskar A, Vidhya VG, Ramya M. 2008. Hypoglycemic effect of Mucuna pruriens seed extract on normal and streptozotocin-diabetic rats. Fitoterapia 79(7−8):539−43

doi: 10.1016/j.fitote.2008.05.008
[57]

Shukla KK, Mahdi AA, Ahmad MK, Jaiswar SP, Shankwar SN, et al. 2010. Mucuna pruriens reduces stress and improves the quality of semen in infertile men. Evidence-Based Complementary and Alternative Medicine 7:706982

doi: 10.1093/ecam/nem171
[58]

Hussian G, Manyam BV. 1997. Mucuna pruriens proves more effective thanl-DOPA in Parkinson’s disease animal model. Phytotherapy Research 11(6):419−23

doi: 10.1002/(sici)1099-1573(199709)11:6<419::aid-ptr120>3.0.co;2-q
[59]

Faisal M, Siddique I, Anis M. 2006. An efficient plant regeneration system for Mucuna pruriens L. (DC.) using cotyledonary node explants. In Vitro Cellular & Developmental Biology − Plant 42(1):59−64

doi: 10.1079/IVP2005717
[60]

Kumar A, Rajput G, Dhatwalia VK, Srivastav G. 2009. Phytocontent screening of Mucuna seeds and exploit in opposition to pathogenic microbes. Journal of Biological and Environmental Sciences 3(9):71−76

[61]

Taghizadeh SF, Azizi M, Asili J, Madarshahi FS, Rakhshandeh H, et al. 2021. Therapeutic peptides of Mucuna pruriens L. : Anti-genotoxic molecules against human hepatocellular carcinoma and hepatitis C virus. Food Science & Nutrition 9(6):2908−14

doi: 10.1002/fsn3.2248
[62]

Tang KHD, Law YWE. 2019. Phytoremediation of soil contaminated with crude oil using Mucuna bracteata. Research in Ecology 1(1):20−30

doi: 10.30564/re.v1i1.739
[63]

Mang YD, Njintang YN, Abdou BA, Scher J, Bernard C, Mbofung MC. 2016. Dehulling reduces toxicity and improves in vivo biological value of proteins in vegetal milk derived from two Mucuna (Mucuna pruriens L.) seeds varieties. Journal of Food Science and Technology 53(6):2548−57

doi: 10.1007/s13197-016-2211-2
[64]

Buckles D. 1995. Velvetbean: A “new” plant with a history. Economic Botany 49(1):13−25

doi: 10.1007/BF02862271
[65]

Macdicken KG, Hairiah K, Otsamo A, Duguma B, Majid NM. 1996. Shade-based control of Imperata cylindrica: tree fallows and cover crops. Agroforestry Systems 36(1-3):131−49

doi: 10.1007/BF00142871
[66]

Hanum C. 2021. Growth pattern of shoot and root Mucuna bracteata from seeds and cuttings. IOP Conference Series: Earth and Environmental Science 782(4):042068

doi: 10.1088/1755-1315/782/4/042068
[67]

Lakshmi KV, Balasubramanian A, Sankaran N. 2009. Seed treatment effects on germination, growth, yield attributes and yield of Mucuna pruriens. Madras Agricultural Journal 96:335−36

[68]

Hartkamp AD, Hoogenboom G, Gilbert RA, Benson T, Tarawali SA, et al. 2002. Adaptation of the CROPGRO growth model to velvet bean (Mucuna pruriens): II. Cultivar evaluation and model testing. Field Crops Research 78(1):27−40

doi: 10.1016/S0378-4290(02)00090-4
[69]

Houngnandan P, Sanginga N, Woomer P, Vanlauwe B, Van Cleemput O. 2000. Response of Mucuna pruriens to symbiotic nitrogen fixation by rhizobia following inoculation in farmers' fields in the derived savanna of Benin. Biology and Fertility of Soils 30:558−65

doi: 10.1007/s003740050036
[70]

Sitinjak RR, Pratomo B. 2019. Potential of goat urine and soaking time on the growth of Mucuna bracteata DC. cuttings. International Journal of Agriculture Innovations and Research 8(1):40−48

[71]

Douthwaite B, Manyong VM, Keatinge JDH, Chianu J. 2002. The adoption of alley farming and Mucuna: Lessons for research, development and extension. Agroforestry Systems 56(3):193−202

doi: 10.1023/a:1021319028117
[72]

Pereira Soares DO, Pinto KGD, Alves da Gama L, Ferreira CC, Bhowmik PC, et al. 2021. Physical properties of soil and Glyphosate residue as a function of cassava weed management by cover crops in the Amazon ecosystem. HortScience 56(9):1053−58

doi: 10.21273/HORTSCI15895-21
[73]

Kumar PR, Sundeep S, Sathyanarayana N. 2020. Microsatellite analysis reveals low interpopulation differentiation in velvet bean (Mucuna pruriens var. utilis) of India. The Nucleus 63(1):35−45

doi: 10.1007/s13237-019-00276-1