[1]

Bäurle I, Dean C. 2006. The timing of developmental transitions in plants. Cell 125:655−64

doi: 10.1016/j.cell.2006.05.005
[2]

Hemming MN, Peacock WJ, Dennis ES, Trevaskis B. 2008. Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiology 147:355−66

doi: 10.1104/pp.108.116418
[3]

Michaels SD, Amasino RM. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell 11:949−56

doi: 10.1105/tpc.11.5.949
[4]

Shimada S, Ogawa T, Kitagawa S, Suzuki T, Ikari C, et al. 2009. A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T. The Plant Journal 58:668−81

doi: 10.1111/j.1365-313X.2009.03806.x
[5]

Zeevaart JAD. 1985. Bryophyllum. In Handbook of Flowering, ed. Halevy AH, Volume II (1st ed.): 540 pp. Boca Raton, Florida: CRC Press. 12 pp. https://doi.org/10.1201/9781351072540

[6]

Zeevaart JAD. 1976. Physiology of flower formation. Annual Review of Plant Physiology 27:321−48

doi: 10.1146/annurev.pp.27.060176.001541
[7]

Boss PK, Thomas MR. 2000. Tendrils, inflorescences, and fruitfulness: a molecular perspective. Australian Journal of Grape and Wine Research 6:168−74

doi: 10.1111/j.1755-0238.2000.tb00176.x
[8]

Li-Mallet A, Rabot A, Geny L. 2016. Factors controlling inflorescence primordia formation of grapevine: their role in latent bud fruitfulness? A review Botany 94:147−63

doi: 10.1139/cjb-2015-0108
[9]

Srinivasan C, Mullins MG. 1981. Physiology of flowering in the grapevine — a review. American Journal of Enology and Viticulture 32:47−63

doi: 10.5344/ajev.1981.32.1.47
[10]

Srinivasan C, Mullins MG. 1979. Flowering in Vitis: conversion of tendrils into inflorescences and bunches of grapes. Planta 145:187−92

doi: 10.1007/BF00388716
[11]

Srinivasan C, Mullins MG. 1980. Flowering in Vitis: effects oi genotype on cytokinin-induced conversion oi tenddls into inflorescences. Vitis 19:293−300

doi: 10.5073/VITIS.1980.19.293-300
[12]

Srinivasan C, Mullins MG. 1981. Induction of precocious flowering in grapevine seedlings by growth regulators. Agronomie 1:1−5

doi: 10.1051/agro:19810101
[13]

Mullins MG. 1968. Regulation of inflorescence growth in cuttings of the grape vine (Vitis vinifera L.). Journal of Experimental Botany 19:532−43

doi: 10.1093/jxb/19.3.532
[14]

Srinivasan C, Mullins MG. 1978. Control of flowering in the grapevine (Vitis vinifera L.): formation of inflorescences in Vitro by isolated tendrils. Plant Physiology 61:127−30

doi: 10.1104/pp.61.1.127
[15]

Boss PK, Thomas MR. 2002. Association of dwarfism and floral induction with a grape 'green revolution' mutation. Nature 416:847−50

doi: 10.1038/416847a
[16]

Fu X, Richards DE, Fleck B, Xie D, Burton N, et al. 2004. The Arabidopsis mutant sleepygar2-1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. The Plant Cell 16:1406−18

doi: 10.1105/tpc.021386
[17]

Hou X, Hu WW, Shen L, Lee LYC, Tao Z, et al. 2008. Global identification of DELLA target genes during Arabidopsis flower development. Plant Physiology 147:1126−42

doi: 10.1104/pp.108.121301
[18]

Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, et al. 1999. 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400:256−61

doi: 10.1038/22307
[19]

Zhong G, Yang Y. 2012. Characterization of grape Gibberellin Insensitive1 mutant alleles in transgenic Arabidopsis. Transgenic Research 21:725−41

doi: 10.1007/s11248-011-9565-z
[20]

Dill A, Sun T. 2001. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777−85

doi: 10.1093/genetics/159.2.777
[21]

Fleck B, Harberd NP. 2002. Evidence that the Arabidopsis nuclear gibberellin signalling protein GAI is not destabilised by gibberellin. The Plant Journal 32:935−47

doi: 10.1046/j.1365-313X.2002.01478.x
[22]

Peng J, Harberd NP. 1997. Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome-deficient mutants of Arabidopsis. Plant Physiology 113:1051−58

doi: 10.1104/pp.113.4.1051
[23]

Silverstone AL, Jung HS, Dill A, Kawaide H, Kamiya Y, et al. 2001. Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. The Plant Cell 13:1555−66

doi: 10.1105/TPC.010047
[24]

Xue H, Gao X, He P, Xiao G. 2022. Origin, evolution, and molecular function of DELLA proteins in plants. The Crop Journal 10:287−99

doi: 10.1016/j.cj.2021.06.005
[25]

Davière JM, Wild M, Regnault T, Baumberger N, Eisler H, et al. 2014. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Current Biology 24:1923−28

doi: 10.1016/j.cub.2014.07.012
[26]

Wang H, Pan J, Li Y, Lou D, Hu Y, et al. 2016. The DELLA-CONSTANS transcription factor cascade integrates gibberellic acid and photoperiod signaling to regulate flowering. Plant Physiology 172:479−88

doi: 10.1104/pp.16.00891
[27]

Serrano-Mislata A, Bencivenga S, Bush M, Schiessl K, Boden S, et al. 2017. DELLA genes restrict inflorescence meristem function independently of plant height. Nature Plants 3:749−54

doi: 10.1038/s41477-017-0003-y
[28]

Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, et al. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052−56

doi: 10.1126/science.1115983
[29]

Carmona MJ, Cubas P, Martinez-Zapater JM. 2002. VFL, the grapevine FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate. Plant Physiology 130:68−77

doi: 10.1104/pp.002428
[30]

Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, et al. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030−33

doi: 10.1126/science.1141752
[31]

Goretti D, Silvestre M, Collani S, Langenecker T, Méndez C, et al. 2020. TERMINAL FLOWER1 functions as a mobile transcriptional cofactor in the shoot apical meristem. Plant Physiology 182:2081−95

doi: 10.1104/pp.19.00867
[32]

Hanano S, Goto K. 2011. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. The Plant Cell 23:3172−84

doi: 10.1105/tpc.111.088641
[33]

Jaeger KE, Wigge PA. 2007. FT protein acts as a long-range signal in Arabidopsis. Current Biology 17:1050−54

doi: 10.1016/j.cub.2007.05.008
[34]

Kobayashi Y, Weigel D. 2007. Move on up, it's time for change-mobile signals controlling photoperiod-dependent flowering. Genes Development 21:2371−84

doi: 10.1101/gad.1589007
[35]

Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF. 1999. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. The Plant Cell 11:1007−18

doi: 10.1105/tpc.11.6.1007
[36]

Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, et al. 1998. A common mechanism controls the life cycle and architecture of plants. Development 125:1609−15

doi: 10.1242/dev.125.9.1609
[37]

Vasconcelos MC, Greven M, Winefield CS, Trought MCT, Raw V. 2009. The flowering process of Vitis vinifera: a review. American Journal of Enology and Viticulture 60:411−34

doi: 10.5344/ajev.2009.60.4.411
[38]

Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, et al. 2005. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056−59

doi: 10.1126/science.1114358
[39]

Cousins P. 2012. Small but mighty: 'Pixie' grapevine speeds up the pace of grape genetics research and breeding. Cornell Viticulture and Enology 2:1−4

[40]

Yang Y, Mao L, Jittayasothorn Y, Kang Y, Jiao C, et al. 2015. Messenger RNA exchange between scions and rootstocks in grafted grapevines. BMC Plant Biology 15:251

doi: 10.1186/s12870-015-0626-y
[41]

Andrew S. 2010. FastQC: a quality control tool for high throughput sequence data. Available from http://www.bioinformatics.babraham.ac.uk/projects/. (Accessed date 8th March 2017).

[42]

Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463−67

doi: 10.1038/nature06148
[43]

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15−21

doi: 10.1093/bioinformatics/bts635
[44]

Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166−69

doi: 10.1093/bioinformatics/btu638
[45]

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139−40

doi: 10.1093/bioinformatics/btp616
[46]

Tian T, Liu Y, Yan H, You Q, Yi X, et al. 2017. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Research 45:W122−W129

doi: 10.1093/nar/gkx382
[47]

Jin J, Tian F, Yang D, Meng Y, Kong L, et al. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research 45:D1040−D1045

doi: 10.1093/nar/gkw982
[48]

Vitulo N, Forcato C, Carpinelli EC, Telatin A, Campagna D, et al. 2014. A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype. BMC Plant Biology 14:99

doi: 10.1186/1471-2229-14-99
[49]

Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, et al. 2019. Efficient Targeted Mutagenesis in Apple and First Time Edition of Pear Using the CRISPR-Cas9 System. Frontiers in Plant Science 10:40

doi: 10.3389/fpls.2019.00040
[50]

Boss PK, Sreekantan L, Thomas MR. 2006. A grapevine TFL1 homologue can delay flowering and alter floral development when overexpressed in heterologous species. Functional Plant Biology 33:31−41

doi: 10.1071/FP05191
[51]

Zhang N, Wen J, Zimmer EA. 2015. Expression patterns of AP1, FUL, FT and LEAFY orthologs in Vitaceae support the homology of tendrils and inflorescences throughout the grape family. Journal of Systematics and Evolution 53:469−76

doi: 10.1111/jse.12138
[52]

Pratt C. 1971. Reproductive anatomy in cultivated grapes - a review. American Journal of Enology and Viticulture 22:92−109

doi: 10.5344/ajev.1971.22.2.92
[53]

Pratt C. 1974. Vegetative anatomy of cultivated grapes - a review. American Journal of Enology and Viticulture 25:131−50

doi: 10.5344/ajev.1974.25.3.131