[1]

Ma N, Ma C, Liu Y, Shahid MO, Wang C, et al. 2018. Petal senescence: a hormone view. Journal of Experimental Botany 69:719−32

doi: 10.1093/jxb/ery009
[2]

Wang L, Zhang F, Rode S, Chin KK, Ko EE, et al. 2017. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis. BMC Genomics 18:538

doi: 10.1186/s12864-017-3929-6
[3]

Wang L, Zhang F, Qiao H. 2020. Chromatin regulation in the response of ethylene: nuclear events in ethylene signaling. Small Methods 4:1900288

doi: 10.1002/smtd.201900288
[4]

Wang L, Zhang Z, Zhang F, Shao Z, Zhao B, et al. 2021. EIN2-directed histone acetylation requires EIN3-mediated positive feedback regulation in response to ethylene. The Plant Cell 33:322−37

doi: 10.1093/plcell/koaa029
[5]

Zhang F, Qi B, Wang L, Zhao B, Rode S, et al. 2016. EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling. Nature Communications 7:13018

doi: 10.1038/ncomms13018
[6]

Zhang F, Wang L, Qi B, Zhao B, Ko EE, et al. 2017. EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proceedings of the National Academy of Sciences of the United States of America 114:10274−79

doi: 10.1073/pnas.1707937114
[7]

Zhang F, Wang L, Ko EE, Shao K, Qiao H. 2018. Histone deacetylases SRT1 and SRT2 interact with ENAP1 to mediate ethylene-induced transcriptional repression. The Plant Cell 30:153−66

doi: 10.1105/tpc.17.00671
[8]

Dar RA, Nisar S, Tahir I. 2021. Ethylene: a key player in ethylene sensitive flower senescence: a review. Scientia Horticulturae 290:110491

doi: 10.1016/j.scienta.2021.110491
[9]

Xu H, Luo D, Zhang F. 2021. DcWRKY75 promotes ethylene induced petal senescence in carnation (Dianthus caryophyllus L.). The Plant Journal 108:1473−92

doi: 10.1111/tpj.15523
[10]

Xu H, Wang S, Larkin RM, Zhang F. 2022. The transcription factors DcHB30 and DcWRKY75 antagonistically regulate ethylene-induced petal senescence in carnation (Dianthus caryophyllus). Journal of Experimental Botany 73:7326−43

doi: 10.1093/jxb/erac357
[11]

Wang Y, Sun Z, Feng S, Yuan X, Zhong L, et al. 2022. The negative regulation of DcERF-1 on senescence of cut carnation. Acta Horticulturae Sinica 49:1313−26

doi: 10.16420/j.issn.0513-353x.2021-0478
[12]

Wang M, Ni C, Wang R, Zhong L, Cheng Y, et al. 2023. Variation in longevity of cut and in planta flowers of potted carnation varieties affected by their relationship with ethylene and water. Ornamental Plant Research 3:2

doi: 10.48130/opr-2023-0002
[13]

Wang T, Sun Z, Wang S, Feng S, Wang R, et al. 2023. DcWRKY33 promotes petal senescence in carnation (Dianthus caryophyllus L.) by activating genes involved in the biosynthesis of ethylene and abscisic acid and accumulation of reactive oxygen species. The Plant Journal 113:698−715

doi: 10.1111/tpj.16075
[14]

Zhu C, Huang Z, Sun Z, Feng S, Wang S, et al. 2023. The mutual regulation between DcEBF1/2 and DcEIL3-1 is involved in ethylene induced petal senescence in carnation (Dianthus caryophyllus L.). The Plant Journal 114:636−50

doi: 10.1111/tpj.16158
[15]

Feng S, Jiang X, Wang R, Tan H, Zhong L, et al. 2023. Histone H3K4 methyltransferase DcATX1 promotes ethylene induced petal senescence in carnation. Plant Physiology 192:546−64

doi: 10.1093/plphys/kiad008
[16]

Sun Z, Wu M, Wang S, Feng S, Wang Y, et al. 2023. An insertion of transposon in DcNAP inverted its function in the ethylene pathway to delay petal senescence in carnation (Dianthus caryophyllus L.). Plant Biotechnology Journal 21:2307−21

doi: 10.1111/pbi.14132
[17]

Wang S, Xu H, Zhang F. 2024. DcEIL3-1, DcWRKY75 and DcHB30 transcription factors form an activation-inhibition module to regulate petal senescence in carnation (Dianthus caryophyllus L.). Postharvest Biology and Technology 210:112743

doi: 10.1016/j.postharvbio.2023.112743
[18]

Feng S, Jiang X, Huang Z, Li F, Wang R, et al. 2024. DNA methylation remodeled amino acids biosynthesis regulates flower senescence in carnation (Dianthus caryophyllus). New Phytologist Early View

doi: 10.1111/nph.19499
[19]

Satoh S, Nukui H, Kudo S, Inokuma T. 2005. Towards understanding the onset of petal senescence: analysis of ethylene production in the long-lasting carnation cv. white candle. Acta Horticulturae 669:175−82

[20]

Nukui H, Kudo S, Yamashita A, Satoh S. 2004. Repressed ethylene production in the gynoecium of long-lasting flowers of the carnation 'White Candle': role of the gynoecium in carnation flower senescence. Journal of Experimental Botany 55:641−50

doi: 10.1093/jxb/erh081
[21]

Onozaki T, Ikeda H, Shibata M. 2004. Video evaluation of ethylene sensitivity after anthesis in carnation (Dianthus caryophyllus L.) flowers. Scientia Horticulturae 99:187−97

doi: 10.1016/S0304-4238(03)00094-3
[22]

Ebrahimzadeh A, Jimenez-Becker S, Manzano-Medina S, Jamilena-Quesada M, Lao-Arenas MT. 2011. Evaluation of ethylene production by ten Mediterranean carnation cultivars and their response to ethylene exposure. Spanish Journal of Agricultural Research 9:524−30

doi: 10.5424/sjar/20110902-124-10
[23]

Yang SF, Hoffman NE. 1984. Ethylene biosynthesis and its regulation in higher-plants. Annual Review of Plant Physiology 35:155−89

doi: 10.1146/annurev.pp.35.060184.001103
[24]

Jones ML. 2003. Ethylene biosynthetic genes are differentially regulated by ethylene and ACC in carnation styles. Plant Growth Regulation 40:129−38

doi: 10.1023/A:1024241006254
[25]

Jones ML, Woodson WR. 1999. Differential expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in carnation. Plant Physiology 119:755−64

doi: 10.1104/pp.119.2.755
[26]

ten Have A, Woltering EJ. 1997. Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence. Plant Molecular Biology 34:89−97

doi: 10.1023/A:1005894703444
[27]

Satoh S. 2011. Ethylene production and petal wilting during senescence of cut carnation (Dianthus caryophyllus) flowers and prolonging their vase life by genetic transformation. Journal of the Japanese Society for Horticultural Science 80:127−35

doi: 10.2503/jjshs1.80.127
[28]

Shibuya, Ichimura. 2010. Depression of autocatalytic ethylene production by high-temperature treatment in carnation flowers. Journal of the Japanese Society for Horticultural Science 79:97−102

doi: 10.2503/jjshs1.79.97
[29]

Satoh S, Waki K. 2006. Repressed expression of DC-ACS1 gene in a transgenic carnation supports the role of its expression in the gynoecium for ethylene production in senescing flower. Journal of the Japanese Society for Horticultural Science 75:173−77

doi: 10.2503/jjshs.75.173
[30]

Onozaki T. 2018. Breeding of carnations (Dianthus caryophyllus L.) for long vase life. Breeding Science 68:3−13

doi: 10.1270/jsbbs.17091
[31]

Tanase K, Otsu S, Satoh S, Onozaki T. 2015. Expression levels of ethylene biosynthetic genes and senescence-related genes in carnation (Dianthus caryophyllus L.) with ultra-long-life flowers. Scientia Horticulturae 183:31−38

doi: 10.1016/j.scienta.2014.11.025
[32]

Kosugi Y, Waki K, Iwazaki Y, Tsuruno N, Mochizuki A, et al. 2002. Senescence and gene expression of transgenic non-ethylene-producing carnation flowers. Journal of the Japanese Society for Horticultural Science 71:638−42

doi: 10.2503/jjshs.71.638
[33]

Zhang F, Wang L, Lim JY, Kim T, Pyo Y, et al. 2016. Phosphorylation of CBP20 links microRNA to root growth in the ethylene response. PLoS Genetics 12:e1006437

doi: 10.1371/journal.pgen.1006437
[34]

Zhang F, Tang W, Hedtke B, Zhong L, Liu L, et al. 2014. Tetrapyrrole biosynthetic enzyme protoporphyrinogen IX oxidase 1 is required for plastid RNA editing. Proceedings of the National Academy of Sciences of the United States of America 111:2023−28

doi: 10.1073/pnas.1316183111
[35]

Qing D, Yang Z, Li M, Wong WS, Guo G, et al. 2016. Quantitative and functional phosphoproteomic analysis reveals that ethylene regulates water transport via the C-terminal phosphorylation of aquaporin PIP2;1 in Arabidopsis. Molecular Plant 9:158−74

doi: 10.1016/j.molp.2015.10.001
[36]

In BC, Ha STT, Lee YS, Lim JH. 2017. Relationships between the longevity, water relations, ethylene sensitivity, and gene expression of cut roses. Postharvest Biology and Technology 131:74−83

doi: 10.1016/j.postharvbio.2017.05.003
[37]

In BC, Binder BM, Falbel TG, Patterson SE. 2013. Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.). Journal of Experimental Botany 64:4923−37

doi: 10.1093/jxb/ert281